535
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Insect biological control of the tomato-potato psyllid Bactericera cockerelli, a review

ORCID Icon, & ORCID Icon
Received 17 Apr 2023, Accepted 22 Jun 2023, Published online: 02 Jul 2023

References

  • Abdullah NM. 2008. Life history of the potato psyllid Bactericera cockerelli (Homoptera: Psyllidae) in controlled environment agriculture in Arizona. African Journal of Agricultural Research. 3(1):60–67.
  • Ail-Catzim CE, Cerna-Chavez E, Landeros-Flores J, Ochoa-Fuentes Y, Rodríguez-González RE, Rueda Puente EO. 2018. Functional response of Chrysoperla carnea on early-stage nymphs of Bactericera cockerelli. Southwestern Entomologist. 43(3):723–731. doi:10.3958/059.043.0318.
  • Al-Jabr AM. 1999. Integrated pest management of tomato/potato psyllid, Paratrioza cockerelli (Sulc) (Homoptera: Psyllidae) with emphasis on its importance in greenhouse grown tomatoes. Fort Collins: Colorado State University.
  • Assessment ME. 2005. Ecosystems and human well-being: wetlands and water. Washington (DC): World Resources Institute.
  • Barnes AM, Taylor NM, Vereijssen J. 2015. Non-crop host plants: prime real estate for the tomato potato psyllid in New Zealand. New Zealand Plant Protection. 68:441. doi:10.30843/nzpp.2015.68.5844.
  • Barnes H. 2017. New biocontrol agent released. NZ Grower. 72:18–20.
  • Bengtsson JAN. 2015. Biological control as an ecosystem service: partitioning contributions of nature and human inputs to yield. Ecological Entomology. 40:45–55. doi:10.1111/een.12247.
  • Butler CD, Trumble JT. 2012a. The potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae): life history, relationship to plant diseases, and management strategies. Terrestrial Arthropod Reviews. 5:87–111. doi:10.1163/187498312X634266.
  • Butler CD, Trumble JT. 2012b. Identification and impact of natural enemies of Bactericera cockerelli (Hemiptera: Triozidae) in Southern California. Journal of Economic Entomology. 105(5):1509–1519. doi:10.1603/EC12051.
  • Calvo FJ, Torres A, González EJ, Velázquez MB. 2018b. The potential of Dicyphus hesperus as a biological control agent of potato psyllid and sweetpotato whitefly in tomato. Bulletin of Entomological Research. 108(6):765–772. doi:10.1017/S0007485318000020.
  • Calvo FJ, Torres-Ruiz A, Velázquez-González J, Rodríguez-Leyva E, Lomeli-Flores JR. 2018a. Improved sweetpotato whitefly and potato psyllid control in tomato by combining the mirid Dicyphus hesperus (Heteroptera: Miridae) with Specialist Parasitic Wasps. Journal of Economic Entomology. 111(2):549–555. doi:10.1093/jee/tox362.
  • Calvo FJ, Torres-Ruiz A, Velazquez-Gonzalez JC, Rodriguez-Leyva E, Lomeli-Flores JR. 2016. Evaluation of Dicyphus hesperus for biological control of sweet potato whitefly and potato psyllid on greenhouse tomato. Biocontrol. 61(4):415–424. doi:10.1007/s10526-016-9719-2.
  • Carrillo CC, Fu Z, Burckhardt D. 2019. First record of the tomato potato psyllid Bactericera cockerelli from South America. Bulletin of Insectology. 72:85–91.
  • Cerón-González C, Lomeli-Flores JR, Rodríguez-Leyva E, Torres-Ruíz A. 2014. Fertility and feeding of Tamarixia triozae (Hymenoptera: Eulophidae) on potato psyllid Bactericera cockerelli. Revista Mexicana de Ciencias Agrícolas. 5(5):893–899. doi:10.29312/remexca.v5i5.912.
  • Chen C, He XZ, Zhou P, Wang Q. 2020. Tamarixia triozae, an important parasitoid of Bactericera cockerelli: circadian rhythms and their implications in pest management. BioControl. 65(5):537–546. doi:10.1007/s10526-020-10023-0.
  • Chen C, He XZ, Zhou P, Wang Q. 2022. Diets for Tamarixia triozae adults before releasing in augmentative biological control. BioControl. 67(3):297–306. doi:10.1007/s10526-022-10136-8.
  • Chen C, He XZ, Zhou P, Wang Q. 2023. Life history and behavior of Tamarixia triozae parasitizing the tomato-potato psyllid, Bactericera cockerelli. Biological Control. 105152. doi:10.1016/j.biocontrol.2023.105152.
  • Clarke AR, Walter GH. 1995. Strains and the classical biological control of insect pests. Canadian Journal of Zoology. 73(10):1777–1790. doi:10.1139/z95-210.
  • Cock MJ, Murphy ST, Kairo MT, Thompson E, Murphy RJ, Francis AW. 2016. Trends in the classical biological control of insect pests by insects: an update of the BIOCAT database. BioControl. 61(4):349–363. doi:10.1007/s10526-016-9726-3.
  • Collier T, Van Steenwyk R. 2004. A critical evaluation of augmentative biological control. Biological Control. 31(2):245–256. doi:10.1016/j.biocontrol.2004.05.001.
  • Compere H. 1943. A new species of Metaphycus parasite on psyllids. Pan-Pacific Entomology. 19:71–73.
  • DAFWA (Department of Agriculture and Food, Western Australia). 2017. Final report 2017.
  • Davidson M, Sachtleben T, MacDonald F. 2023. The establishment and spread of Tamarixia triozae, a parasitoid of the potato psyllid, in New Zealand. BioControl. doi:10.1007/s10526-023-10194-6.
  • De Schutter O. 2010. Report submitted by the special rapporteur on the right to food: human rights council; sixteenth session: agenda item 3: promotion and protection of all human rights, civil, political, economic, social and cultural rights, including the right to develop. United Nations (UN).
  • Djaman K, Higgins C, Begay S, Koudahe K, Allen S, Lombard K, O’Neill M. 2019. Seasonal occurrence of potato psyllid (Bactericera cockerelli) and risk of zebra chip pathogen (Candidatus Liberibacter solanacearum) in Northwestern New Mexico. Insects. 11(1):3. doi:10.3390/insects11010003.
  • Ferguson G, Shipp L. 2002. New pests in Ontario greenhouse vegetables. Bulletin OILB/SROP [Proceedings of the join IOBC/WPRS working group “Integrated control in protected crops temperate climate” and IOBC/NRS “Greenhouse, nursery, and ornamental landscape IPM working group” at Victoria (British Columbia) Canada, 6–9 May 2002] 25(1), 69–72.
  • Geary IJ, Merfield CN, Hale RJ, Shaw MD, Hodge S. 2016. Predation of nymphal tomato potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae), by the predatory mite, Anystis baccarum L.(Trombidiformes: Anystidae). New Zealand Entomologist. 39(2):110–116. doi:10.1080/00779962.2016.1218525.
  • Gill G. 2006. Tomato psyllid detected in New Zealand. Biosecurity. 69:10–11.
  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. 2010. Food security: the challenge of feeding 9 billion people. Science. 327(5967):812–818. doi:10.1126/science.1185383.
  • Goldson SL, Barker GM, Chapman HM, Popay AJ, Stewart AV, Caradus JR, Barratt BI. 2020. Severe insect pest impacts on New Zealand pasture: the plight of an ecological outlier. Journal of Insect Science. 20(2):1–17. doi:10.1093/jisesa/ieaa018.
  • Goldson SL, Wratten SD, Ferguson CM, Gerard PJ, Barratt BIP, Hardwick S, McNeill MR, Phillips CB, Popay AJ, Tylianakis JM, Tomasetto F. 2014. If and when successful classical biological control fails. Biological Control. 72:76–79. doi:10.1016/j.biocontrol.2014.02.012.
  • Greathead DJ, Greathead AH. 1992. Biological control of insect pests by insect parasitoids and predators: the BIOCAT database. Biocontrol News and Information. 13:4. doi:10.1079/cabireviews/19921166435.
  • GSDR. 2019. Independent group of scientists appointed by the secretary-general, global sustainable development report. The future is now – science for achieving sustainable development. New York: United Nations; p. 64.
  • Guédot C, Horton DR, Landolt PJ. 2012. Age at reproductive maturity and effect of age and time of day on sex attraction in the potato psyllid Bactericera cockerelli. Insect Science. 19(5):585–594. doi:10.1111/j.1744-7917.2011.01498.x.
  • Gurr GM, Barlow ND, Memmott J, Wratten SD, Greathead DJ. 2000. A history of methodological, theoretical and empirical approaches to biological control. In: Biological control: measures of success. Dordrecht: Springer; p. 3–37.
  • Gurr GM, Lu Z, Zheng X, Xu H, Zhu P, Chen G, Yao X, Cheng J, Zhu Z, Catindig JL, et al. 2016. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nature Plants. 2(3):1–4. doi:10.1038/nplants.2016.14.
  • Gurr GM, Wratten SD, Landis DA, You M. 2017. Habitat management to suppress pest populations: progress and prospects. Annual Review of Entomology. 62(1):91–109. doi:10.1146/annurev-ento-031616-035050.
  • Hansen AK, Trumble JT, Stouthamer R, Paine TD. 2008. A new huanglongbing species, “Candidatus Liberibacter psyllaurous,” found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Applied and Environmental Microbiology. 74(18):5862–5865. doi:10.1128/AEM.01268-08.
  • Hodek I, Honěk A. 2009. Scale insects, mealybugs, whiteflies and psyllids (Hemiptera, Sternorrhyncha) as prey of ladybirds. Biological Control. 51(2):232–243. doi:10.1016/j.biocontrol.2009.05.018.
  • Hoelmer KA, Kirk AA. 2005. Selecting arthropod biological control agents against arthropod pests: can the science be improved to decrease the risk of releasing ineffective agents? Biological Control. 34(3):255–264. doi:10.1016/j.biocontrol.2005.05.001.
  • Ingerslew KS, Finke DL. 2018. Multi-species suppression of herbivores through consumptive and non-consumptive effects. PLoS One. 13(5):e0197230. doi:10.1371/journal.pone.0197230.
  • Jensen D. 1957. Parasites of the psyllidae. Hilgardia. 27(2):71–99.
  • Kean AM, Nielsen MC, Davidson MM, Butler RC, Vereijssen J. 2019. Host plant influences establishment and performance of Amblydromalus limonicus, a predator for Bactericera cockerelli. Pest Management Science. 75(3):787–792. doi:10.1002/ps.5179.
  • King C. 2014. Serious disease on the horizon? Potatoes in Canada Winter 2013. http://www.bluetoad.com/article/Serious_Disease_On_The_Horizon%3F/1325572/147983/article.html.
  • Knowlton GF, Janes MJ. 1931. Studies on the biology of Paratrioza cockerelli (Sulc). Annals of the Entomological Society of America. 24(2):283–292. doi:10.1093/aesa/24.2.283.
  • Knowlton GF, Thomas WL. 1934. Host plants of the potato psyllid. Journal of Economic Entomology. 27(2):547. doi:10.1093/jee/27.2.547.
  • LaCanne CE, Lundgren JG. 2018. Regenerative agriculture: merging farming and natural resource conservation profitably. PeerJ. 6:e4428. doi:10.7717/peerj.4428.
  • Lehman RS. 1930. Some observations on the life history of the tomato psyllid (Paratrioza cockerelli Sulc.) (Homoptera). Journal of the New York Entomological Society. 38(3):307–312.
  • Lewis OM, Michels GJ, Pierson EA, Heinz KM. 2015. A predictive degree day model for the development of Bactericera cockerelli (Hemiptera: Triozidae) infesting Solanum tuberosum. Environmental Entomology. 44(4):1201–1209. doi:10.1093/ee/nvv078.
  • Li YY, Wang YN, Zhang HZ, Zhang MS, Wang MQ, Mao JJ, Zhang LS. 2023. The green lacewing Chrysopa formosa as a potential biocontrol agent for managing Spodoptera frugiperda and Spodoptera litura. Bulletin of Entomological Research. 113(1):49–62. doi:10.1017/S000748532200030X.
  • Liefting LW, Perez-Egusquiza ZC, Clover GRG, Anderson JAD. 2008. A new ‘Candidatus Liberibacter’ species in Solanum tuberosum in New Zealand. Plant Disease. 92(10):1474–1474. doi:10.1094/PDIS-92-10-1474A.
  • Liu DG, Trumble JT. 2005. Interactions of plant resistance and insecticides on the development and survival of Bactericera cockerelli (Sulc) (Homoptera: Psyllidae). Crop Protection. 24(2):111–117. doi:10.1016/j.cropro.2004.07.001.
  • Liu DG, Trumble JT. 2007. Comparative fitness of invasive and native populations of the potato psyllid (Bactericera cockerelli). Entomologia Experimentalis et Applicata. 123(1):35–42. doi:10.1111/j.1570-7458.2007.00521.x.
  • Liu DG, Trumble JT, Stouthamer R. 2006. Molecular characterisation indicates recent introductions of potato psyllid (Bactericera cockerelli) into western North American are genetically different from eastern populations. Entomologia Experimentalis et Applicata. 118:177–183. doi:10.1111/j.1570-7458.2006.00383.x.
  • Liu JF, Zhang ZQ, Beggs JR, Zou X. 2019. Provisioning predatory mites with entomopathogenic fungi or pollen improves biological control of a greenhouse psyllid pest. Pest Management Science. 75(12):3200–3209. doi:10.1002/ps.5438.
  • Losey JE, Vaughan M. 2006. The economic value of ecological services provided by insects. Bioscience. 56(4):311–323. doi:10.1641/0006-3568(2006)56[311:TEVOES]2.0.CO;2.
  • MacDonald FH, Connolly PG, Larsen NJ, Walker GP. 2016. The voracity of five insect predators on Bactericera cockerelli (Sülc) (Hemiptera: Triozidae) (tomato potato psyllid; TPP). New Zealand Entomologist. 39(1):15–22. doi:10.1080/00779962.2015.1089825.
  • MacDonald FH, Walker GP, Larsen NJ, Wallace AR. 2010. Naturally occurring predators of Bactericera cockerelli in potatoes. New Zealand Plant Protection. 63:275–275. doi:10.30843/nzpp.2010.63.6583.
  • Martínez AM, Baena M, Figueroa JI, Estal PD, Medina M, Guzmán-Lara E, Pineda S. 2014. Primer registro de Engytatus varians (Distant) (Hemiptera: Heteroptera: Miridae) en México y su depredación sobre Bactericera cockerelli (Šulc) (Hemiptera: Triozidae): una revisión de su distribución y hábitos. Acta Zoológica Mexicana. 30(3):617–624. doi:10.21829/azm.2014.30381.
  • Mayo-Hernández J, Vega-Chávez JL, Hernández-Juárez A, Rodríguez-Pagaza Y, Valenzuela-Soto JH, Flores-Olivas A. 2022. Tomato varieties influence the performance of Tamarixia triozae (Hymenoptera: Eulophidae) on Bactericera cockerelli (Hemiptera: Triozidae) Nymphs. Insects. 13(9):825. doi:10.3390/insects13090825.
  • Mena Mociño LV. 2016. Características biológicas y reproductivas de Engytatus varians (Distant) y Dicyphus maroccanus Wagner (Hemiptera: Miridae), depredadores zoofitófagos de plagas de solanáceas. http://bibliotecavirtual.dgb.umich.mx:8083/xmlui/handle/DGB_UMICH/6583.
  • Mena-Mociño LV, Pineda S, Martínez AM, Palma-Castillo LJ, Gómez-Ramos B, Viñuela E, Figueroa JI. 2021. Effects of sex ratio on different biological parameters of Engytatus varians (Distant)(Hemiptera: Miridae) adults and their offspring: prey preference for Bactericera cockerelli (Sulcer)(Hemiptera: Triozidae). Bulletin of Entomological Research. 111(6):733–740.
  • Munyaneza JE. 2012. Zebra chip disease of potato: biology, epidemiology, and management. American Journal of Potato Research. 89(5):329–350. doi:10.1007/s12230-012-9262-3.
  • Munyaneza JE, Crosslin JM, Upton JE. 2007. Association of Bactericera cockerelli (Homoptera: Psyllidae) with “Zebra Chip,” a new potato disease in southwestern United States and Mexico. Journal of Economic Entomology. 100(3):656–663. doi:10.1603/0022-0493(2007)100[656:AOBCHP]2.0.CO;2.
  • Munyaneza JE, Sengoda VG, Crosslin JM, Garzon-Tiznado JA, Cardenas-Valenzuela OG. 2009. First report of “Candidatus Liberibacter solanacearum” in tomato plants in Mexico. Plant Disease. 93(10):1076–1076. doi:10.1094/PDIS-93-10-1076A.
  • Naranjo SE, Ellsworth PC, Frisvold GB. 2015. Economic value of biological control in integrated pest management of managed plant systems. Annual Review of Entomology. 60(1):621–645. doi:10.1146/annurev-ento-010814-021005.
  • Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L. 2016. Chemical pesticides and human health: the urgent need for a new concept in agriculture. Frontiers in Public Health. 4(148):1–8. doi:10.3389/fpubh.2016.00148.
  • O’Connell DM, Wratten SD, Pugh AR, Barnes AM. 2012. ‘New species association’ biological control? Two coccinellid species and an invasive psyllid pest in New Zealand. Biological Control. 62(2):86–92. doi:10.1016/j.biocontrol.2012.03.011.
  • Patel K, Zhang ZQ. 2017. Prey preference and reproduction of predatory mites, Amblybromalus limonicus and Neoseiulus cucumeris, on eggs and 1st instar nymphs of the tomato/potato psyllid. International Journal of Acarology. 43(6):468–474. doi:10.1080/01647954.2017.1349177.
  • Pérez-Aguilar DA, Martínez AM, Viñuela E, Figueroa JI, Gómez B, Morales SI, Pineda S. 2019. Impact of the zoophytophagous predator Engytatus varians (Hemiptera: Miridae) on Bactericera cockerelli (Hemiptera: Triozidae) control. Biological Control. 132:29–35. doi:10.1016/j.biocontrol.2018.12.009.
  • Pineda S, Hernández-Quintero O, Velázquez-Rodríguez YB, Viñuela E, Figueroa JI, Morales SI, Martínez-Castillo AM. 2020. Predation by Engytatus varians (Distant) (Hemiptera: Miridae) on Bactericera cockerelli (Sulcer) (Hemiptera: Triozidae) and two Spodoptera species. Bulletin of Entomological Research. 110(2):270–277. doi:10.1017/S0007485319000579.
  • Pineda S, Medina M, Figueroa JI, Henry TJ, Mena LV, Chavarrieta JM, Martínez AM. 2016. Life history, diagnosis, and biological aspects of Engytatus varians (Hemiptera: Miridae), a predator of Bactericera cockerelli (Hemiptera: Triozidae). Biocontrol Science and Technology. 26(8):1073–1086. doi:10.1080/09583157.2016.1185088.
  • Pletsch DJ. 1947. The potato psyllid, Paratrioza cockerelli (Sulc), its biology and control. Bulletin of Montana Agricultural Experiment Station. 446:95–104.
  • Pluke RW, Escribano A, Michaud JP, Stansly PA. 2005. Potential impact of lady beetles on Diaphorina citri (Homoptera: Psyllidae) in Puerto Rico. Florida Entomologist. 88(2):123–128. doi:10.1653/0015-4040(2005)088[0123:PIOLBO]2.0.CO;2.
  • Pretty J, Benton TG, Bharucha ZP, Dicks LV, Flora CB, Godfray HCJ, Wratten S. 2018. Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability. 1(8):441–446. doi:10.1038/s41893-018-0114-0.
  • Pugh AR, O’Connell DM, Wratten SD. 2015. Further evaluation of the southern ladybird (Cleobora mellyi) as a biological control agent of the invasive tomato–potato psyllid (Bactericera cockerelli). Biological Control. 90:157–163. doi:10.1016/j.biocontrol.2015.06.009.
  • Ramírez-Ahuja MDL, Rodríguez-Leyva E, Lomeli-Flores JR, Torres-Ruiz A, Guzmán-Franco AW. 2017. Evaluating combined use of a parasitoid and a zoophytophagous bug for biological control of the potato psyllid, Bactericera cockerelli. Biological Control. 106:9–15. doi:10.1016/j.biocontrol.2016.12.003.
  • Richards BL. 1928. A new and destructive disease of the potato in Utah and its relation to the potato psylla. Phytopathology. 18(1):140–141.
  • Rojas P, Rodríguez-Leyva E, Lomeli-Flores JR, Liu TX. 2015. Biology and life history of Tamarixia triozae, a parasitoid of the potato psyllid Bactericera cockerelli. BioControl. 60(1):27–35. doi:10.1007/s10526-014-9625-4.
  • Rosen D. 1986. The role of taxonomy in effective biological control programs. Agriculture, Ecosystems & Environment. 15(2–3):121–129. doi:10.1016/0167-8809(86)90085-X.
  • Salas-Araiza MD, González-Marques MA, Martínez-Jaime OA. 2015. Capacidad de consumo de Chrysoperla carnea (Stephens, 1836) (Neuroptera: Chrysopidae) sobre Bactericera cockerelli (Sulc, 1909) (Hemiptera: Psyllidae). Folia Entomológica Mexicana (Nueva Serie). 1(1):1–6.
  • Sarkar SC, Milroy SP, Xu W. 2022. Development and reproduction of a native generalist predator, Coccinella transversalis (Coleoptera: Coccinellidae), on the tomato potato psyllid, Bactericera cockerelli, with a greenhouse assay of biocontrol potential. Biological Control. 176:105108. doi:10.1016/j.biocontrol.2022.105108.
  • Sarkar SC, Milroy SP, Xu W. 2023. Potential of variegated lady beetle Hippodamia variegata in management of invasive tomato potato psyllid Bactericera cockerelli. Pest Management Science. 79(2):821–832. doi:10.1002/ps.7247.
  • Sengoda VG, Munyaneza JE, Crosslin JM, Buchman JL, Pappu HR. 2010. Phenotypic and etiological differences between psyllid yellows and zebra chip diseases of potato. American Journal of Potato Research. 87:41–49. doi:10.1007/s12230-009-9115-x.
  • Shields MW, Johnson AC, Pandey S, Cullen R, González-Chang M, Wratten SD, Gurr GM. 2019. History, current situation and challenges for conservation biological control. Biological Control. 131:25–35. doi:10.1016/j.biocontrol.2018.12.010.
  • Shipp JL, Wang K. 2006. Evaluation of Dicyphus hersperus (Heteroptera: Miridae) for biological control of Frankliniella occidentalis (Thysanoptera: Thripidae) on greenhouse tomato. Journal of Economic Entomology. 99(2):414–420. doi:10.1093/jee/99.2.414.
  • Shipp L, Elliott D, Gillespie D, Brodeur J. 2007. From chemical to biological control in Canadian greenhouse crops. In: Biological control: a global perspective. Wallingford: CABI; p. 118–127.
  • Springmann M, Clark M, Mason-D’Croz D, Wiebe K, Bodirsky BL, Lassaletta L, de Vries W, Vermeulen SJ, Herrero M, Carlson KM, et al. 2018. Options for keeping the food system within environmental limits. Nature. 562(7728):519–525. doi:10.1038/s41586-018-0594-0.
  • Stiling P. 1993. Why do natural enemies fail in classical biological control programs? American Entomologist. 39(1):31–37. doi:10.1093/ae/39.1.31.
  • Tamayo-Mejía F, Tamez-Guerra P, Guzmán-Franco AW, Gomez-Flores R. 2015. Can Beauveria bassiana Balsamo (Vuill) (Ascomycetes: Hypocreales) and Tamarixia triozae (Burks) (Hymenoptera: Eulophidae) be used together for improved biological control of Bactericera cockerelli (Hemiptera: Triozidae)? Biological Control. 90:42–48. doi:10.1016/j.biocontrol.2015.05.014.
  • Teulon DAJ, Workman PJ, Thomas KL, Nielsen MC. 2009. Bactericera cockerelli incursion dispersal and current distribution on vegetable crops in New Zealand. New Zealand Plant Protection. 62:136–144. doi:10.30843/nzpp.2009.62.4783.
  • Thomas KL, Jones DC, Kumarasinghe LB, Richmond JE, Gill GSC, Bullians MS. 2011. Investigation into the entry pathway for tomato potato psyllid Bactericera cockerelli. New Zealand Plant Protection. 64:259–268. doi:10.30843/nzpp.2011.64.6008.
  • Tran LT, Worner SP, Hale RJ, Teulon DAJ. 2012. Estimating development rate and thermal requirements of Bactericera cockerelli (Hemiptera: Triozidae) reared on potato and tomato by using linear and nonlinear models. Environmental Entomology. 41(5):1190–1198. doi:10.1603/EN12124.
  • Veronesi ER, Olaniyan O, London H, Saville DJ, Wratten SD. 2021. Potential inter-guild interactions to enhance biological control of Bactericera cockerelli on tomatoes: a laboratory and cage study. BioControl. 66:343–353. doi:10.1007/s10526-020-10074-3.
  • Veronesi ER, Saville DJ, van Koten C, Wratten SD, Goldson SL. 2022a. Potential of the mirid bug, Engytatus nicotianae, for the biological control of the tomato-potato psyllid in greenhouses. Crop Protection. 156:105941. doi:10.1016/j.cropro.2022.105941.
  • Veronesi ER, Wratten SD, van Koten C, Goldson SL. 2022b. Potential of the mirid bug Engytatus nicotianae, and the parasitic wasp Tamarixia triozae for the biological control of the tomato-potato psyllid; a cage greenhouse assay. New Zealand Journal of Crop and Horticultural Science. doi:10.1080/01140671.2022.2152843.
  • Wallis RL. 1955. Ecological studies on the potato psyllid as a pest of potatoes (No. 1107). Champaign (IL): US Department of Agriculture.
  • Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, Garnett T, Tilman D, DeClerck F, Wood A, et al. 2019. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet. 393(10170):447–492. doi:10.1016/S0140-6736(18)31788-4.
  • Wyckhuys KAG, Pozsgai G, Lovei GL, Vasseur L, Wratten SD, Gurr GM, Reynolds OL, Goettel M. 2019. Global disparity in public awareness of the biological control potential of invertebrates. Science of the Total Environment. 660:799–806. doi:10.1016/j.scitotenv.2019.01.077.
  • Xu Y, Zhang ZQ. 2015. Amblydromalus limonicus: a “new association” predatory mite against an invasive psyllid (Bactericera cockerelli) in New Zealand. Systematic and Applied Acarology. 20(4):375–382. doi:10.11158/saa.20.4.3.
  • Yang XB, Campos-Figueroa M, Silva A, Henne DC. 2015. Functional response, prey stage preference, and mutual interference of the Tamarixia triozae (Hymenoptera: Eulophidae) on tomato and bell pepper. Journal of Economic Entomology. 108(2):414–424. doi:10.1093/jee/tou048.
  • Yang XB, Liu TX. 2009. Life history and life tables of Bactericera cockerelli (Homoptera: Psyllidae) on eggplant and bell pepper. Environmental Entomology. 38(6):1661–1667. doi:10.1603/022.038.0619.
  • Yang XB, Zhang YM, Hua L, Liu TX. 2010. Life history and life tables of Bactericera cockerelli (Hemiptera: Psyllidae) on potato under laboratory and field conditions in the lower Rio Grande Valley of Texas. Journal of Economic Entomology. 103(5):1729–1734. doi:10.1603/EC10083.