149
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Thermodynamical, electrical and electro-optical studies of a room temperature tri-component antiferroelectric liquid crystalline material

, , &
Pages 746-757 | Received 05 Feb 2014, Accepted 07 Feb 2014, Published online: 07 Apr 2014

References

  • Manjuladevi V, Vij JK. Electrical field-induced birefringence, optical rotator power and conoscopic measurements of chiral antiferroelectric smectic liquid crystal. Liq Cryst. 2007;34:963–973.
  • Panarin YP, Xu H, Maclughadha ST, Vij JK, Seed A, Hird M, Goodby JW. An investigation of the field induced subphases in antiferroelectric mesophases. Liq Cryst. 1994;17:571–583.
  • Hird M. Ferroelectricity in liquid crystal: materials properties and applications. Liq Cryst. 2011;38:1467–1793.
  • Mishra A, Pandey AS, Dabrowski R, Dhar R. Dielectric and switching parameters of para-, ferro- and antiferroelectric phases of (S)-(+)-4-(1-methylheptyloxycarbonyl)phenyl 4′-(6- perfluorooctanoyloxyhex-1-oxy)biphenyl-4-carboxylate. Liq Cryst. 2013;40:699–709.
  • Pandey MB, Verma R, Dhar R. Dielectric and electro-optical properties of antiferroelectric liquid crystalline materials. Israel J Chem. 2012;52:895–907.
  • Dauali R, Legrand CV, Laux V, Isaert N, Joly G, Nguyen HT. Correlation between dielectric and optical measurements in the SmC*a phase. Phys Rev E. 2004;69:031709–031718.
  • Chandani ADL, Ouchi Y, Takezoe H, Fukuda A, Terashima K, Furukawa K, Kishi A. Novel phases exhibiting tristable switching. Jpn J Appl Phys 2. 1989;28:L1261–L1264.
  • Chandani ADL, Gorecka E, Ouchi Y, Takezoe H, Fukuda A. Antiferroelectric chiral smectic phases responsible for the tristable switching in MHPOBC. Jpn J Appl Phys 2. 1989;28:L1265–L1268.
  • Lagerwall ST. Ferroelectric and antiferroelectric liquid crystals. New York: Wiley-VCH; 1999.
  • Bos P, Bhowmik AK. Liquid crystal technology advances toward future true 3D-flat-panel displays. Inf Disp. 2011;27:6–10.
  • Pandey MB, Dabrowski R, Dhar R. Anti-ferroelectric liquid crystals: smart materials for antiferroelectric future displays. In: Tiwari A, Valyukh S, editors. Advance energy materials. Beverly (MA): Scrivener Publishing LLC; 2014. p. 389–432. ISBN 978-1-118-68629-4.
  • Dąbrowski R, Kula P, Raszewski Z, Piecek W, Otòn JM, Spadło A. New orthoconic antiferroelectrics useful for applications. Ferroelectrics. 2010;395:116–132.
  • Wen J, Tain M, Chen Q. Novel fluorinated liquid crystals. II. The synthesis and phase transitions of a novel type of ferroelectric liquid crystals containing 1,4-tetrafluorophenylene moiety. Liq Cryst. 1994;16:445–453.
  • Marzec M, Wrobel S, Gondek E, Dabrowski R. Room temperature antiferroelectric phase studied by electro-optic methods. Mol Cryst Liq Cryst. 2004;410:153–161.
  • Takezoe H, Gorecka E, Cepic M. Antiferroelectric liquid crystals: interplay of simplicity and complexity. Rev Mod Phys. 2010;82:897–937.
  • Żurowska M, Dąbrowski R, Dziaduszek J, Garbat K, Filipowicz M, Tykarska M, Rejmer W, Czupryński K, Spadło A, Bennis N, Oton JM. Influence of alkoxy chain length and fluorosubstitution on mesogenic and spectral properties of high tilted antiferroelectric esters; J Mater Chem. 2011;21:2144–2153.
  • Dhar R, Mishra A, Pandey AS, Zurowska M, Dabrowski RS. Dielectric and electro-optical response of a room temperature tri-component antiferroelectric mixture. Liq Cryst. 2013;40(11):1466–1476.
  • Perkowski P. Dielectric spectroscopy of liquid crystals. Electrodes resistivity and connecting wires inductance influence on dielectric measurements. Optoelectron Rev. 2012;20(1):79–86.
  • Pandey G, Dhar R, Agrawal VK, Dabrowski R. Study of different modes of dielectric relaxation in the ferro-and antiferroelectric phases of a newly-synthesized highly tilted chiral liquid crystal material 6H6B. Phase Transit. 2004;77:1111–1123.
  • Pandey MB, Dhar R, Dabrowski R. Temperature and bias electric field dependence of dielectric parameters of (S)-(1)-4-(1-methylheptyloxycarbonyl) phenyl-4′-(3-butanoiloxyprop-1-oxy)biphenyl-4′-carboxylate. Philos Mag. 2008;88:101–119.
  • Pandey MB, Dhar R, Kuczynski W. Dielectric investigations of induced twist grain boundary phases in the binary mixtures of cholesteryl benzoate and di-heptyloxyazoxybenzene. Ferroelectrics. 2006;343:69–82.
  • Pandey AS, Dhar R, Achalkumar AS, Yelamaggad CV. Electrical behaviour of twist grain boundary phases of 4-n-dodecyloxy-4′-(cholesteryloxycarbonyl-1-butyloxy) chalcone. Open Crystallogr J. 2011;4:49–58.
  • Cole KS, Cole RH. Dispersion and absorption in dielectrics. J Chem Phys. 1941;9:341–351.
  • Gouda F, Skarp K, Lagerwall ST. Dielectric studies of the soft mode and Goldstone mode in ferroelectric liquid crystals. Ferroelectrics. 1991;113:165–206.
  • Srivastava SL, Dhar R. Characteristic time of ionic conductance and electrode polarization capacitance in some organic liquids by low frequency dielectric spectroscopy. Indian J Pure Appl Phys. 1991;29:745–751.
  • Srivastava SL. Electrical properties of ferroelectric liquid crystals. Proc Natl Acad Sci India. 1993;63:311–332.
  • Dhar R. An impedance model to improve the higher frequency limit of electrical measurements on the capacitor cell made from electrodes of finite resistance. Indian J Pure Appl Phys. 2004;42:56–61.
  • Fafara A, Marzec M, Haase W, Wrobel S, Kilian D, Godlewska M, Czuprynski K, Dabrowski R. Antiferroelectric liquid crystals studied by different methods. Ferroelectrics. 2000;245:81–89.
  • Kundu S, Ray T, Ray SK, Haase W, Dabrowski R. Effect of UV curable polymer on the dielectric & electro-optic properties of ferroelectric liquid crystal. Ferroelectrics. 2003;282:239–248.
  • Srivastava SL, Agrawal VK, Beresnev LA. Switching time and spontaneous polarization of a thin layered liquid crystal mixture by direct pulse technique. Indian J Appl Phys. 1993;31:30–35.
  • Skarp K, Dahl I, Lagerwall ST, Stebler B. Polarization and viscosity measurements in a ferroelectric liquid crystal by the field reversal method. Mol Cryst Liq Cryst. 1984;114:283–297.
  • Beresnev LA, Blinov LM, Osipov MA, Pikin SA. Ferroelectric liquid crystals. Mol Cryst Liq Cryst. 1988;158:1–150.
  • Perkowski P, Piecek W, Raszewski Z, Ogrodnik K, Zurowska M, Dabrowski R, Kedzierski J. Precise dielectric spectroscopy of a long pitch orthoconic antiferroelectric working mixture. Mol Cryst Liq Cryst. 2011;541:191–200.
  • Perkowski P, Mrukiewicz M, Zurowska M, Dabrowsko R, Jaroszewicz L. Dielectric modes in antiferroelectric liquid crystal observed at low temperatures. Liq Cryst. 2013;40:864–870.
  • Manna U, Song JK, Panarin YP, Fukuda A, Vij JK. Electro-optic and dielectric study of the de Vries-type smectic-A* phase exhibiting transitions to smectic-C*a and smectic-C* phases. Phys Rev E. 2008;77:041707(1–12).
  • Buivydas M, Gouda F, Andersson G, Lagerwall ST, Stebler B, Bomelburg J, Heppke G, Gestblom B. Collective and non-collective excitations in antiferroelectric and ferroelectric liquid crystals studied by dielectric relaxation spectroscopy and electro-optic measurements. Liq Cryst. 1997;23:723–739.
  • Carvalho PS, Chaves MR, Destrade C, Nguyen HT, Glogarova M. Ferroelectric and antiferroelectric modes in a new chiral thiobenzoate liquid crystal. Liq Cryst. 1996;21:31–37.
  • Hirao K, Taguchi A, Ouchi Y, Takezoe H, Fukuda A. Observation of three subphases in smectic C* of MHPOBC by dielectric measurements. Jpn J Appl Phys. 1990;29:L103–L106.
  • Srivastava SL, Dhar R, Kurik MV. Change in electrical and thermodynamical properties of cholesteryl myristate on irradiation. Mol Mater. 1993;2:261–273.
  • Levstik A, Carlsson T, Filipic C, Levstik I, Zeks B. Goldstone mode and soft mode at the smectic A-smectic C* phase transition studied by dielectric relaxation. Phys Rev A. 1987;35:3527.
  • Mandal PK, Jaishi BR, Haase W, Dabrowski R, Tykarska M, Kula P. Optical microscopy, DSC and dielectric relaxation spectroscopy studies on a partially fluorinated ferroelectric liquid crystalline compound MHPO(13F)BC. Phase Transit. 2006;79:223–235.
  • Haldar S, Dey KC, Sinha D, Mandal PK, Haase W, Kula P. X-ray diffraction and dielectric spectroscopy studies on a partially fluorinated ferroelectric liquid crystal from the family of terphenyl esters. Liq Cryst. 2012;39:1196–1203.
  • Hiller S, Pikin SA, Hasse W, Goodby JW, Nishiyama I. Dielectric dispersion in ferrielectric phase of antiferroelectric liquid crystal. Jpn J Appl Phys. 1994;33:L1096–L1099.
  • Srivastava AK, Dhar R, Agrawal VK, Lee SH, Dabrowski R. Switching and electrical properties of ferro- and antiferroelectric phases of MOPB(H)PBC. Liq Cryst. 2008;35:1101–1108.
  • Perkowski P, Ogrodnik K, Piecek W, Zurowska M, Raszewski Z, Dabrowski R, Jaroszewicz L. Influence of the bias field on dielectric properties of the SmC*a in the vicinity of the SmC*-SmC*a phase transition. Liq Cryst. 2011;38:1159–1167.
  • Panarin YP, Kalinovskaya O, Vij JK. The investigation of the relaxation processes in antiferroelectric liquid crystals by electro-optic spectroscopy. Appl Phys Lett. 1998;72:1667–1669.
  • Panarin YP, Kalinovskaya O, Vij JK. The investigation of the relaxation processes in antiferroelectric liquid crystals by broad band dielectric and electro-optic spectroscopy. Liq Cryst. 1998;25:241–252.
  • Pandey G, Dhar R, Agrawal VK, Dabrowski R. Characteristics of the dielectric relaxation modes of a newly synthesized fluorinated antiferroelectric liquid crystal 6F6B. Phys B. 2007;393:167–174.
  • Lagerwall JPF. Demonstration of the antiferroelectric aspect of the helical superstructures in Sm-C*, Sm-C*α, and SmC*a liquid crystals. Phys Rev E. 2005;71:051703.
  • Tykarska M, Czerwiński M, Żurowska M. The temperature and concentration dependence of helical pitch in the mixtures of antiferroelectric compounds with the opposite helical twist sense, Liq Cryst. 2011;38:561–566.
  • Spadlo A, Bennis N, Dabrowski R, Quintana X, Oton JM, Geday MA. Modifying electrooptics of orthoconic antiferroelectric liquid crystal cells by manufacturing procedures. Optoelectron Rev. 2007;15:60–65.
  • Spadlo A, Oton E, Dabrowski R, Zurowska M, Oton JM, Bennis N. Comparative electrooptic study of new orthoconic liquid crystals with fluorinated alkoxy terminal chains. Optoelectron Rev. 2010;18:219–222.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.