Publication Cover
Phase Transitions
A Multinational Journal
Volume 87, 2014 - Issue 9
109
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Electrical properties of complex tungsten bronze ceramics

&
Pages 865-880 | Received 18 Nov 2013, Accepted 09 Apr 2014, Published online: 18 Jun 2014

References

  • Känzig W. Ferroelectrics and antiferroelectrics. New York (NY): Academic Press; 1957.
  • Moulson AJ, Herbert JM. Electroceramics: materials, properties, applications. West Sussex: Wiley; 2003.
  • Hornebecq V, Elissalde C, Reau JM, Ravez J. Relaxations in new ferroelectric tantalates with tetragonal tungsten bronze structure. Ferroelectrics. 2000;238(1):57–63.
  • Pang L-X, Wang H, Zhou Di, Liu WH. Sintering behavior and microwave dielectric properties of Ba6−3xNd8+2xTi18O54 (x = 2/3) ceramics coated by H3BO3-TEOS sol–gel. Mater Chem Phys. 2010;123(2–3):727–730.
  • Fang L, Zhang H, Huang TH, Yuan RZ, Liu HX. Preparation, structural and dielectric properties of Ba5YZnM9O30 (M = Nb, Ta) ceramics. J Mater Sci. 2005;40(2):533–535.
  • Singh AK, Choudhary RNP. Study of ferroelectric phase transition in Pb3R3Ti5Nb5O30 (R = rare earth ion) ceramics. Ferroelectrics. 2005;325:7–14.
  • Behera B, Nayak P, Choudhury RNP. Structural, dielectric and electrical properties of NaBa2×5O51 (X = Nb and Ta) ceramics. Mater Lett. 2005;59(27):3489–3493.
  • Jain S, Ganguly P, Devi S, Jha AK. Structural, dielectric and ferroelectric studies of molybdenum substituted Sr2Bi2Nb2O9 ferroelectric ceramics. Ferroelectrics. 2009;381(1):152–159.
  • Padhee R, Das PR, Parida BN, Choudhary RNP. Dielectric and pyroelectric properties of niobium based complex tungsten bronze ferroelectrics. J Mater Sci. 2013;24(2):799–806.
  • Cavelli E, Calestani G, Belletti A, Bovero E. Flux growth, structural studies and spectroscopy of K2NdNb5O15and Nd:K2LaNb5O15 crystals. J Alloys Compounds. 2008;451(1–2):143–145.
  • Bouziane M, Benabad A, Niepce JC, Elouadi B. Investigation of the ferroelectric phase with the tetragonal tungsten bronze structural type in the ternary system PbNb2O6 - NaNb03 - LaFeO3. Phys Chem News. 2008;44:133–137.
  • Liu L, Gao F, Hu G, Liu J, Li J. Microstructure and electrical properties of potassium strontium niobate (KSr2Nb5O15) ceramics. J Alloys Compounds. 2013;580:93–100.
  • Su C, Fang L, Liu L, Xiang F, Zhang H, Kuang X. Dielectric and optical properties of Ba5AFe0.5Ta9.5O30 (A = K, Li) tungsten bronze ceramics. J Mater Sci. 2013;24(10):3891–3896.
  • Ganguly P, Biradar AM, Jha AK. Structural, dielectric and electrical studies of Ba4CaRTi3Nb7O30 (R = Eu, Dy) ferroelectric system. Key Eng Mater. 2013;547:41–48.
  • Tan YQ, Yu Y, Hao YM, Dong SY, Yang YW. Structure and dielectric properties of Ba5NdCu1.5Nb8.5O30−δtungsten bronze ceramics. Mater Res Bull. 2013;48(5):1934–1938.
  • Guo C, Yin S, Dong Q, Kimura T, Tanaka M, Hang LT, Wu X, Sato T. Solvothermal fabrication of rubidium tungsten bronze for the absorption of near infrared light. J Nanosci Nanotechnol. 2013;13(5):3236–3239.
  • Das PR, Choudhary RNP, Samantray BK. Diffuse ferroelectric phase transition in Na2Pb2Sm2W2Ti4 Nb4O30 ceramics. Mater Chem Phys 2007;101(1):228–233.
  • Das PR, Choudhary RNP, Samantray BK. Diffuse ferroelectric phase transition in Na2Pb2Nd2W2Ti4Nb4O30ceramic. J Alloys Compounds. 2008;448(1–2):32–37.
  • Das PR, Choudhary RNP, Samantray BK. Diffuse phase transition in Na2Pb2R2W2Ti4V4O30 (R = Gd, Eu) ferroelectric ceramics. J Phys Chem Solids. 2007;68(4):516–522.
  • Padhee R, Das R, Parida BN, Choudhary RNP. Structural, dielectric and electrical properties of dysprosium based new complex electroceramics. J Mater Sci. 2012;23(9):1688–1697.
  • Parida BN, Das R, Padhee R, Choudhary RNP. A new ferroelectric oxide Li2Pb2Pr2W2Ti4Nb4O30: synthesis and characterization. J Phys Chem Solids. 2012;73:713–719.
  • Padhee R, Das R, Parida BN, Choudhary RNP. Electrical and pyroelectric properties of K2Pb2Gd2W2Ti4Nb4O30 ferroelectrics. J Electron Mater. 2013;42(3):426–437.
  • Padhee R, Das R, Parida BN, Choudhary RNP. Dielectric and electrical properties of a tungsten bronze tantalate ceramic. Curr Appl Phys. 2013;13(6):1014–1020.
  • Padhee R, Das R, Parida BN, Choudhary RNP. Structural, dielectric and pyroelectric properties of praseodymium based complex tungsten bronze ferroelectrics. Ferroelectrics. 2012;437:160–170.
  • Koops CG. On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys Rev. 1951;83:121.
  • Parida BN, Das R, Padhee R, Choudhary RNP. Dielectric and pyroelectric properties of La- and Pr-modified tungsten-bronze ferroelectrics. J Electron Mater. 2013;42(8):2587–2594.
  • Garcia JE, Gomis V, Perez R, Albareda A, Eiras JA. Unexpected dielectric response in lead zirconate titanate ceramics: the role of ferroelectric domain wall pinning effects. Appl Phys Lett. 2007;91:042902.
  • Wu D, Li A, Ming N. Dielectric characterization of Bi3.25La0.75Ti3O12 thin films. Appl Phys Lett. 2004;84:4505.
  • Dai Z, Akishige Y. Electrical properties of multiferroic BiFeO3 ceramics synthesized by spark plasma sintering. J Phys D. 2010;43:445403.
  • Almond DP, West AR. Impedance and modulus spectroscopy of “real” dispersive conductors. Solid State Ionics. 1983;11(1):57–64.
  • Jonscher AK. Dielectric relaxation in solids. London: Chelesa Dielectric Press; 1983.
  • Dissado LA, Hill RH. Non-exponential decay in dielectrics and dynamics of correlated systems. Nature. 1979;279:685–689.
  • Dissado LA, Hill RH. Dielectric behaviour of materials undergoing dipole alignment transitions. Phill Mag B. 1980;41:625.
  • Nobre MAL, Lanfredi S. Ferroelectric state analysis in grain boundary of Na0.85Li0.15NbO3 ceramic. J Appl Phys. 2003;93:5557–5562.
  • Das PS, Chakraborty PK, Behera B, Choudhary RNP. Electrical properties of Li2BiV5O15 ceramics. Phys B. 2007;395(1–2):98–103.
  • Macdonald JR. Note on the parameterization of the constant-phase admittance element. Solid State Ionics. 1984;13(2):147–149.
  • Wieczorek W, Plocharski J, Pryluski J. Impedance spectroscopy and phase structure of PEONaI complexes. Solid State Ionics. 1988;28–30:1014–1017.
  • Behera B, Nayak P, Choudhary RNP. Structural and impedance properties of KBa2V5O15 ceramics. Mater Res Bull. 2008;43(2):401–410.
  • Jonscher AK. The ‘universal’ dielectric response. Nature. 1977;267:673–679.
  • Suman CK, Prasad K, Choudhary RNP. Complex impedance studies on tungsten bronze electroceramic: Pb2Bi3LaTi5O18. J Mater Sci. 2006;41(2):369–375.
  • Kim JS, Kim JN. Impedance spectra near the phase transition temperature of potassium lithium niobate crystals. Jpn J Appl Phys. 2000;39:3502–3505.
  • Lu Z, Bonnet JP, Ravez J, Reau JM, Hagenmuller P. An impedance study of Pb2KNb5O15 ferroelectric ceramics. Phys Chem Solids. 1992;53:1–9.
  • Sinclair DC, West AR. Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J Appl Phys. 1989;66(8):3850–3856.
  • Hodge IM, Ingram MD, West AR. A new method for analysing the a.c. behaviour of polycrystalline solid electrolytes. J Electroanal Chem Interfacial Electrochem. 1975;58(2):429–432.
  • Deng G, Li G, Ding A, Yin Q. Evidence for oxygen vacancy inducing spontaneous normal-relaxor transition in complex perovskite ferroelectrics. Appl Phys Lett. 2005;87:192905.
  • Molak A, Talik E, Kruczek M, Paluch M, Ratuszna A, Ujma Z. Characterisation of Pb(Mn1/3Nb2/3)O3 ceramics by SEM, XRD, XPS and dielectric permittivity tests. Mater Sci Eng B. 2006;128:16–24.
  • Das PR, Behera S, Padhee R, Nayak P, Choudhary RNP. Studies of dielectric and electrical properties of Na2Pb2La2W2Ti4Ta4O30 electroceramics. J Advanced Ceramics. 2012;1(3):232–240.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.