Publication Cover
Phase Transitions
A Multinational Journal
Volume 89, 2016 - Issue 2
68
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Zn–Ti double substitution on the electrical properties of Bi4V2O11

&
Pages 167-179 | Received 21 Apr 2015, Accepted 03 Aug 2015, Published online: 08 Oct 2015

References

  • Shao Z, Mederos J, Kwak C, et al. Evaluation of Bi2V0.9Cu0.1O5.35– an Aurivillius-type conducting oxide as a cathode material for single-chamber solid oxide fuel cells. J Fuel Cell Sci Technol. 2010;7:021016/1–8.
  • Boivin JC, Pirovano C, Nowogrocki G, et al. Electrode-electrolyte BIMEVOX system for moderate temperature oxygen separation. Solid State Ion. 1998;113–115:639–651.
  • Löfberg A, Bodet H, Pirovano C, et al. Bi2V1-xMexO5.5-δ (Me = Ta, Ni) membranes for selective oxidation of C1-C3 alkanes in a catalytic dense membranes reactor. Catalysis Today. 2006;117:168–173.
  • Kim S, Miyayama M. Anisotropy in oxide ion conductivity of Bi4V2-xCoxO11-δ. Solid State Ion. 1997;104:295–302.
  • Akopjan AV, Serov TV, Dolgikh VA, et al. A new anion conductive bismuth-vanadium oxyfluoride. J Mater Chem. 2002;12:1490–1494.
  • Golosovsky IV, Golubko NV, Mosunov AV, et al. Crystal structure and phase transition in the doped super-ionic conductor bismuth vanadate Bi4(V,Fe)2O11 revealed by neutron diffraction. Phys Status Solidi B. 2013;250(7):1345–1351.
  • Krok K, Abrahams I, Wrobel W, et al. Phase stability, structure and electrical conductivity in the system Bi2ZrxV1-xO5.5-(x/2)-δ. Solid State Ion. 2002;154–155:511–516.
  • Abraham F, Debreuille-Gresse MF, Mairesse G, et al. Phase transitions and ionic conductivity in Bi4V2O11 an oxide with layered structure. Solid State Ion. 1988;28–30:529–532.
  • Qiu L, Yang YL, Jacobson AJ. Manganese-doped bismuth vanadate solid electrolytes. J Mater Chem. 1997;7(2):249–253.
  • Patwe SJ, Patra A, Dey R, et al. Probing the local structure and phase transitions of Bi4V2O11-based fast ionic conductors by combined Raman and XRD studies. J Am Ceram Soc. 2013;96(11):3448–3456.
  • Vannier RN, Pernot E, Anne M, et al. Bi4V2O11 polymorph crystals structures related to their electrical properties. Solid State Ion. 2003;157:147–153.
  • Vernochet C, Vannier RN, Huve M, et al. Chemical, structure and electrical characterization in the BIZNVOX family. J Mater Chem. 2000;10:2811–2817.
  • Wrobel W, Abrahams I, Krok F, et al. Phase transition in the BIZRVOX system. Solid State Ion. 2005;176:1731–1737.
  • Paydar MH, Hadian AM, Fafilek G. Studies on preparation, characterization and ion conductivity of TI-CU double substituted Bi4V2O11. J Euro Ceramic Soc. 2001;21:1821–1824.
  • Paydar MH, Hadian AM, Fafilek G. Ionic conductivity and crystal structure relationships in Ti/Cu substituted Bi4V2O11. J Mater Sci. 2004;39:1357–1361.
  • Alga M, Ammar A, Tanouti B, et al. Effect of niobium doping on structural, thermal, sintering and electrical properties of Bi4V1.8Cu0.2O10.7. J Solid State Chem. 2005;178:2873–2879.
  • Kurek P, Breiter MW. Thermal stability and ionic conductivity of the BIMEVOX.10 ceramic (ME = Zn, Ni). Solid State Ion. 1996;86–88:131–135.
  • Lazure S, Vernochet Ch, Vannier RN, et al. Composition dependence of oxide anion conduction in the BIMEVOX family. Solid State Ion. 1996;90:117–123.
  • Krok F, Abrahams I, Zadrożna A, et al. Electrical conductivity and structure correlation in BIZNVOX. Solid State Ion. 1999;119:139–144.
  • Macdonald DD. Review of mechanistic analysis by electrochemical impedance spectroscopy. Electrochim Acta 1990;35:1509–1525.
  • Beg S, Salami NS. Study on the electrical properties of Co-Ti double substituted Bi4V2O11. J Alloys Compd. 2014;586:302–307.
  • Lee CK, Ong CS. Synthesis and characterization of rare earth substituted bismuth vanadate solid electrolytes. Solid State Ion. 1999;117:301–310
  • Krok F, Abrahams I, Bangobango DG, et al. Electrical and structural study of BICOVOX. Solid State Ion. 1996;86–88:261–266.
  • Beg S, Al-Areqi NAS, Haneef S. Study of phase transition and ionic conductivity changes of Cd-substituted Bi4V2O11-δ. Solid State Ion. 2008;179:2260–2264.
  • Abrahams I, Nelstrop JAG, Krok F, et al. Defect structure of quenched γ-BINIVOX. Solid State Ion. 1998;110:95–101.
  • Abrahams I, Krok F, Nelstrop JAG. Defect structure of quenched γ-BICOVOX by combined X-ray and neutron powder diffraction. Solid State Ion. 1996;90:57–65.
  • Abrahams I, Krok F. A model for the mechanism of low temperature ionic conduction in divalent substituted γ-BIMEVOXes. Solid State Ion. 2003;157:139–145.
  • Salami NS, Beg S. Effect of Zn substitution on the electrical properties of Bi2Co0.1V0.9O5.35 synthesized by sol-gel method. Phase Transit. 2015;88(5):521–533.
  • Jaiswal SK, Kumar J. Sol-gel formation, Mӧssbauer studies, optical absorption and impedance characteristic of Ba0.5Sr0.5Zn0.2Fe0.8O3-ξ powder. Mater Chem Phys. 2012;136:28–35.
  • Batoo KM, Kumar S, Lee CG, Alimuddin. Study of dielectric and ac impedance properties of Ti doped Mn ferrites. Curr Appl Phys. 2009;9:1397–1406.
  • Xia XL, Ouyang JH, Liu ZG. Electrical properties of gadolinium-europium zirconate ceramics. J Am Ceram Soc. 2010;93:1074–1080.
  • Lee CK, West AR. Thermal behavior and polymorphism of BIMEVOX oxide ion conductors including the new materials: Bi4V2O11: M; M = La, Y, Mg, B. Solid State Ion. 1996;86–88:235–239.
  • Krok F, Abrahams I, Bangobango D, et al. Structural and electrical characterization of BINIVOX. Solid State Ion. 1998;111:37–43.
  • Krok F, Abrahams I, Malys M, et al. Structural and electrical consequences of high dopant levels in the BIMGVOX system. Solid State Ion. 2000;136–137:119–125.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.