Publication Cover
Phase Transitions
A Multinational Journal
Volume 89, 2016 - Issue 6
98
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Mixed Ising system designed with integer and half-integer spins: dynamic behaviors under oscillating magnetic field

Pages 608-621 | Received 17 Jun 2015, Accepted 29 Sep 2015, Published online: 10 Feb 2016

References

  • Mallah T, Thiébaut S, Verdauger M, et al. High-Tc molecular-based magnets: ferrimagnetic mixed-valence chromium(III)–chromium(II) cyanides with Tc at 240 and 190 kelvin. Science. 1993;262:1554–1557.
  • Drillon M, Coronado E, Beltran D, et al. Organic conductors, superconductors and magnets: from synthesis to molecular electronics. J Chem Phys. 1983;79:449–453.
  • Htoutou K, Ainane A, Saber M. The transverse crystal-field effects of the mixed spin Ising bilayer system. J Magn Magn Mater. 2004;269:245–258.
  • Kasama T, Muraoka Y, Idogaki T. Molecular field and Monte Carlo study for the mixed-spin axial next-nearest-neighbor Ising model. Phys Rev B. 2006;73:214411–214419.
  • Albayrak E, Bulut T, Yilmaz S. Critical and compensation temperatures of the Ising bilayer system consisting of spin-1/2 and spin-1 atoms. J Stat Phys. 2007;127:967–983.
  • Zhang YF, Yan SL. The phase diagrams and compensation behaviors of mixed spin Blume–Capel model in a trimodal magnetic field. Phys Lett A. 2008;372:2696–2700.
  • Wu H, Wei G, Zhang P, et al. Thermodynamic properties of the mixed spin-1/2 and spin-1 Ising chain with both longitudinal and transverse single-ion anisotropies. J Magn Magn Mater. 2010;322:3502–3507.
  • Ekiz C, Strečka J, Jaščur M. Phase diagrams of the mixed spin-1 and spin-1/2 Ising–Heisenberg model on the diamond-like decorated Bethe lattice. J Magn Magn Mater. 2011;323:493–498.
  • Strečka J, Ekiz C. Reentrant phase transitions and multicompensation points in the mixed-spin Ising ferrimagnet on a decorated Bethe lattice. Physica A. 2012;391:4763–4773.
  • Benayad N, Ghliyem M. Mixed spin Ising model with four-spin interaction and random crystal field. Physica B. 2012;407:6–13.
  • Strečka J, Cisarova C. Order-from-disorder effect in the exactly solved mixed spin-(1/2, 1) Ising model on fully frustrated triangles-in-triangles lattices. Physica A. 2013;392:5633–5643.
  • Benayad N, Ghliyem M. Thermodynamical properties of the mixed spin Blume–Capel model with four-spin interactions. J Magn Magn Mater. 2013;343:99–107.
  • Ghliyen M, Beneyad N, Azhari M. Thermodynamical properties of the mixed spin transverse Ising model with four-spin interactions. Physica A. 2014;402:14–29.
  • Godoy M, Figueiredo W. Mixed-spin Ising model with one- and two-spin competing dynamics. Phys Rev E. 2000;61:218–223.
  • Godoy M, Figueiredo W. Competing dynamics in the mixed-spin Ising model with crystal-field interaction. Physica A. 2004;339:392–402.
  • Buendía GM, Machado E. Kinetics of a mixed Ising ferrimagnetic system. Phys Rev E. 1998;58:1260–1266.
  • Keskin M, Canko O, Polat Y. Dynamic phase transitions in the kinetic mixed spin-1/2 and spin-1 Ising ferrimagneitic system under a time-dependent magnetic field. J. Korean Phys Soc. 2008;53:497–504.
  • Ertaş M, Keskin M. Dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model in an oscillating magnetic field. Physica B. 2015;470–471:76–81.
  • Solano-Carrillo E, Franco R, Silva-Valancia J. Magnetic properties of a ferrimagnetic mixed image spin chain with inhomogeneous crystal-field anisotropy. J Magn Magn Mater. 2010;322:1917–1922.
  • Deviren B, Şener Y. Magnetic properties of mixed spin (1,3/2) Ising nanoparticles with core-shell structure. J Magn Magn Mater. 2010;322:1917–1922.
  • Abubrig OF, Horváth D, Bobák A, et al. Mean-field solution of the mixed spin-1 and spin-3/2 Ising system with different single-ion anisotropies. Physica A 2015;386:12–19.
  • Liu LM, Jiang W, Wang Z, et al. Magnetization and phase diagram of a cubic nanowire in the presence of the crystal field and the transverse field. J. Magn Magn Mater. 2012;324:4034–4042.
  • Deviren B, Akbudak S, Keskin M. Mixed spin-1 and spin-3/2 Ising system with two alternative layers of a honeycomb lattice within the effective-field theory. Solid State Commun. 2011;151:193–198.
  • Liang YQ, Wei GZ, Xu XJ, et al. Longitudinal-random-field mixed Ising model with arbitrary spins. Commun Theor Phys. 2010;53:957–963.
  • Belmamoun Y, Kerouad M. The magnetic properties of a mixed spin-1 and spin- 3/2 random longitudinal field. Chin J Phys. 2009;47:100–114.
  • Bobák A, Abubrig OF, Horváth D. An effective-field study of the mixed spin-1 and spin-32 Ising ferrimagnetic system. J Magn Magn Mater. 2002;246:177–183.
  • Feraoun A, Zaim A, Kerouad M. Monte Carlo study of a mixed spin (1, 3/2) ferrimagnetic nanowire with core/shell morphology. Physica B. 2014;445:74–80.
  • Zaim A, Kerouad M, Boughrara M. Monte Carlo study of the magnetic behavior of a mixed spin (1, 3/2) ferrimagnetic nanoparticle. Solid State Commun. 2013;158:76–81.
  • Su X, Zheng L, Hou Q. Specific heat of spin-1 and spin-3/2 mixed 3d Ising ferromagnetic model in external magnetic field. Mod Phys Lett B. 2012;26:1250101–1250107.
  • Jiang L, Zhang J, Chen Z, et al. Monte Carlo study of magnetic properties for the mixed spin-3/2 and spin-1 ferrimagnetic nanoparticles. Physica B. 2010;405:420–424.
  • Žukovič M, Bobák A. Phase diagram of a mixed spin-1 and spin-3/2 Ising ferrimagnet. Physica A. 2010;3889:5402–5407.
  • Shen S, Jiang L, Yang Y, et al. The magnetic properties of mixed one-dimensional ferrimagnetic spin chain with complex arrangement. Physica B. 2007;392:141–146.
  • Li J, Zhang L, Shan A. Monte Carlo calculation of Ising model with single‐site anisotropy energy in ferromagnetic iron nitride system. Phys Stat Sol. 2007;244:3340–3345.
  • Mert G. Green's function study of a mixed spin-1 and spin-3/2 Heisenberg ferrimagnetic system. J Magn Magn Mater. 2012;324:2706–2710.
  • Yazıcı M. Equilibrium behavior of the mixed spin-1 and spin-3/2 ising system by using the lowest approximation of the cluster variation method. J Optoelec Advan Mater. 2010;12:2437–2441.
  • Tucker JW. Mixed spin-1 and spin-3/2 Blume–Capel Ising ferromagnet. J Magn Magn Mater. 2001;237:215–224.
  • Albayrak E, Yilmaz S. The spin-1 and spin-3/2 model on a bilayer Bethe lattice with crystal field. J Phys Condns Matter. 2007;19:376212–376232.
  • Albayrak E. Mixed spin-1 and spin-3/2 Blume–Capel Ising ferrimagnetic system on the bethe lattice. Int J Mod Phys B. 2003;17:1087–1093.
  • Keskin M, Kantar E, Canko O. Kinetics of a mixed spin-1 and spin-3/2 Ising system under a time-dependent oscillating magnetic field. Phys Rev E. 2008;77:051130–051139.
  • Keskin M, Kantar E. Dynamic compensation temperatures in a mixed spin-1 and spin-3/2 Ising system under a time-dependent oscillating magnetic field. J Magn Magn Mater. 2010;322:2789–2796.
  • Temizer Ü. Dynamic magnetic properties of the mixed spin-1 and spin-3/2 Ising system on a two-layer square lattice. J Magn Magn Mater. 2014;372:47–58.
  • Shi XL, Wang L, Wie GZ. Magnetic properties of transverse Ising model under a time oscillating longitudinal field. Commun Theor Phys. 2011;55:715–720.
  • Ertaş M, Deviren B, Keskin M. Existence of a dynamic compensation temperature of a mixed spin-2 and spin-5/2 Ising ferrimagnetic system in an oscillating field. Phys Rev E. 2012;86:051110–051121.
  • Shi X, Wei G. Effective-field theory on the kinetic spin-1 Blume–Capel model. Physica A. 2012;391:29–34.
  • Ertaş M, Deviren B, Keskin M. Dynamic phase transitions and dynamic phase diagrams of the spin-2 Blume–Capel model under an oscillating magnetic field within the effective-field theory. J Magn Magn Mater. 2012;324:704–710.
  • Costabilei E, Ricardo de Sousa J. Phase transitions in a three-dimensional kinetic spin-1/2 Ising model with random field: effective-field-theory study. Phys Rev E. 2012;85:011121–011127.
  • Ertaş M, Keskin M, Deviren B. Dynamic phase transitions and dynamic phase diagrams in the kinetic spin-5/2 Blume–Capel model in an oscillating external magnetic field: Effective-field theory and the Glauber-type stochastic dynamics approach. J Magn Magn Mater. 2012;324:1503–1511.
  • Ertaş M, Kocakaplan Y, Keskin M. Effective-field theory for dynamic phase diagrams of the kinetic spin-3/2 Blume–Capel model under a time oscillating longitudinal field. J Magn Magn Mater. 2013;348:113–119.
  • Deviren B, Ertaş M, Keskin M. Dynamic magnetizations and dynamic phase transitions in a transverse cylindrical Ising nanowire. Phys Scr. 2012;85:055001–055011.
  • Ertaş M, Keskin M. Dynamic hysteresis features in a two-dimensional mixed Ising system. Phys Lett A. 2015;379:1576–1578.
  • Ertaş M, Kocakaplan Y. Dynamic behaviors of the hexagonal Ising nanowire. Phys Lett A. 2014;378:845–850.
  • Honmura R, Kaneyoshi T. Contribution to the new type of effective-field theory of the Ising model. J Phys C Solid State Phys. 1979;12:3979–3992.
  • Kaneyoshi T, Fittipaldi IP, Honmura R, et al. New correlated-effective-field theory in the Ising model. Phys Rev B. 1981;24:481–485
  • Kaneyoshi T, Beyer H. A new type of decoupling approximation for ising model with spin 1/2. J Phys Soc Japan. 1980;49:1306–1312.
  • Zernike F. The propagation of order in co-operative phenomena: Part I. The AB case. Physica. 1940;7:565–585.
  • Kaneyoshi T, Honmura R, Tamura I, et al. Amorphization of a crystalline diluted Ising ferromagnet. Phys Rev B. 1984;29:5121–5126.
  • Taufour V, Aoki D, Knebel G, et al. Tricritical point and wing structure in the itinerant ferromagnet UGe2. Phys Rev Lett. 2010;105:217201–217211.
  • Hoston W, Berker AN. Multicritical phase diagrams of the Blume–Emery–Griffiths model with repulsive biquadratic coupling. Phys Rev Lett. 1991;67:1027–1030.
  • Bakchich A, Bouziani M El. Surface critical behavior of the semi-infinite Blume–Emery–Griffiths model. Phys Rev B. 1997;56:11161–11170.
  • Sata T, Yamaguchi T . Interaction between anionic polyelectrolytes and anion exchange membranes and change in membrane properties. J Membr Sci. 1995;100:229–238.
  • Kimura T, Kumai R, Tokura Y, et al. Successive structural transitions coupled with magnetotransport properties in LaSr2Mn2O7. Phys Rev B. 1998;58:11081–11088.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.