Publication Cover
Phase Transitions
A Multinational Journal
Volume 89, 2016 - Issue 11
433
Views
24
CrossRef citations to date
0
Altmetric
Articles

Enhanced electrocaloric effect in Ba0.85Ca0.15Zr0.1Ti0.9–xSnxO3 ferroelectric ceramics

, &
Pages 1062-1073 | Received 19 Dec 2015, Accepted 18 Jan 2016, Published online: 02 Mar 2016

References

  • Yeo T, Tan I, Abdullah M. Development of adsorption air-conditioning technology using modified activated carbon – a review. Renew Sustain Energ Rev. 2012;16:3355–3363.
  • Lu SG, Zhang Q. Electrocaloric materials for solid-state refrigeration. Adv Mater. 2009;21:1983–1987.
  • Guo D, Gao J, Yu Y-J, et al. Design and modeling of a fluid-based micro-scale electrocaloric refrigeration system. Int J Heat Mass Trans. 2014;72:559–564.
  • Engelbrecht K, Bahl CRH, Nielsen KK. Experimental results for a magnetic refrigerator using three different types of magnetocaloric material regenerators. Int J Refrig. 2011;34:1132–1140.
  • Scott J. Electrocaloric materials. Annu Rev Mater Res. 2011;41:229–240.
  • Liu J, Gottschall T, Skokov KP, et al. Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 2012;11:620–626.
  • Nordblad P. Magnetocaloric materials: strained relations. Nat Mater. 2013;12:11–12.
  • Pirc R, Kutnjak Z, Blinc R, et al. Electrocaloric effect in relaxor ferroelectrics. arXiv preprint arXiv:10102914. 2010.
  • Valant M, Dunne LJ, Axelsson A-K, et al. Electrocaloric effect in a ferroelectric Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystal. Phys Rev B. 2010;81:214110.
  • Rose MC, Cohen RE. Giant electrocaloric effect around Tc. Phys Rev Lett. 2012;109:187604.
  • Patel S, Chauhan A, Vaish R. Multiple caloric effects in (Ba0.865Ca0.135Zr0.1089Ti0.8811Fe0.01)O3 ferroelectric ceramic. Appl Phys Lett. 2015;107:042902.
  • Patel S, Chauhan A, Vaish R. Caloric effects in bulk lead-free ferroelectric ceramics for solid-state refrigeration. Energ Technol. 2015. doi:10.1002/ente.201500205
  • Chauhan A, Patel S, Vaish R. Elastocaloric effect in ferroelectric ceramics. Appl Phys Lett. 2015;106:172901.
  • Chauhan A, Patel S, Vaish R. Multicaloric effect in Pb(Mn1/3Nb2/3)O3-32PbTiO3 single crystals. Acta Mater. 2015;89:384–395.
  • Patel S, Chauhan A, Vaish R. Mechanical confinement for tuning ferroelectric response in PMN-PT single crystal. J Appl Phys. 2015;117:084102.
  • Ramesh G, Rao MR, Sivasubramanian V, et al. Electrocaloric effect in (1-x)PIN-xPT relaxor ferroelectrics. J Alloy Compd. 2015;663:444–448.
  • Mischenko A, Zhang Q, Scott J, et al. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science. 2006;311:1270–1271.
  • Chauhan A, Patel S, Vaish R. Multicaloric effect in Pb(Mn1/3Nb2/3)O3-32PbTiO3 single crystals: modes of measurement. Acta Mater. 2015;97:17–28.
  • Shrout TR, Zhang SJ. Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram. 2007;19:113–126.
  • Panda P. Review: environmental friendly lead-free piezoelectric materials. J Mater Sci. 2009;44:5049–5062.
  • Setter N. Electroceramics: looking ahead. J Eur Ceram Soc. 2001;21:1279–1293.
  • Moya X, Stern‐Taulats E, Crossley S, et al. Giant electrocaloric strength in single-crystal BaTiO3. Adv Mater. 2013;25:1360–1365.
  • Liu Z, Li X, Zhang Q. Maximizing the number of coexisting phases near invariant critical points for giant electrocaloric and electromechanical responses in ferroelectrics. Appl Phys Lett. 2012;101:082904.
  • Bai Y, Han X, Qiao L. Optimized electrocaloric refrigeration capacity in lead-free (1−x)BaZr0.2Ti0.8O3-xBa0.7Ca0.3TiO3 ceramics. Appl Phys Lett. 2013;102:252904.
  • Ehmke MC, Schader FH, Webber KG, et al. Stress, temperature and electric field effects in the lead-free (Ba,Ca)(Ti,Zr)O3 piezoelectric system. Acta Mater. 2014;78:37–45.
  • Upadhyay SK, Reddy VR, Bag P, et al. Electro-caloric effect in lead-free Sn doped BaTiO3 ceramics at room temperature and low applied fields. Appl Phys Lett. 2014;105:112907.
  • Sanlialp M, Shvartsman VV, Acosta M, et al. Strong electrocaloric effect in lead-free 0.65Ba(Zr0.2Ti0.8)O3-0.35(Ba0.7Ca0.3)TiO3 ceramics obtained by direct measurements. Appl Phys Lett. 2015;106:062901.
  • Kaddoussi H, Lahmar A, Gagou Y, et al. Electro-caloric effect in lead-free ferroelectric Ba1−xCax(Zr0.1Ti0.9)0.925Sn0.075O3 ceramics. Ceram Int. 2015;41:15103–15110.
  • Kim Y, Yoo J. Electrocaloric effect of lead-free (Ba,Ca)(Zr,Ti)O3 ferroelectric ceramic. J Electron Mater. 2015;44:2555–2558.
  • Kaddoussi H, Gagou Y, Lahmar A, et al. Room temperature electro-caloric effect in lead-free Ba(Zr0.1Ti0.9)1−xSnxO3 (x = 0, x = 0.075) ceramics. Solid State Commun. 2015;201:64–67.
  • Kaddoussi H, Lahmar A, Gagou Y, et al. Electro-caloric effect in lead-free ferroelectric electro-caloric effect in lead-free ferroelectric Ba1−xCax(Zr0.1Ti0.9)0.925Sn0.075O3 ceramics. Ceram Int. 2015;41:15103–15110.
  • Liu XQ, Chen TT, Wu YJ, et al. Enhanced electrocaloric effects in spark plasma-sintered Ba0.65Sr0.35TiO3-based ceramics at room temperature. J Am Ceram Soc. 2013;96:1021–1023.
  • Singh G, Tiwari V, Gupta P. Electro-caloric effect in (Ba1−xCax)(Zr0.05Ti0.95)O3: a lead-free ferroelectric material. Appl Phys Lett. 2013;103:202903.
  • Patel S, Chauhan A, Vaish R. Enhanced electrocaloric effect in Fe-doped (Ba0.85Ca0.15Zr0.1Ti0.9)O3 ferroelectric ceramics. App Mater Today. 2015;1:37–44.
  • Valant M. Electrocaloric materials for future solid-state refrigeration technologies. Prog Mater Sci. 2012;57:980–1009.
  • Singh G, Bhaumik I, Ganesamoorthy S, et al. Electro-caloric effect in 0.45BaZr0.2Ti0.8O3-0.55Ba0.7Ca0.3TiO3 single crystal. Appl Phys Lett. 2013;102:082902.
  • Kutnjak Z, Rožič B, Pirc R. Electrocaloric effect: theory, measurements, and applications. In: Wiley encyclopedia of electrical and electronics engineering. John Wiley & Sons; 2015.
  • Liu X, Wu D, Chen Z, et al. Ferroelectric, dielectric and pyroelectric properties of Sr and Sn codoped BCZT lead free ceramics. Adv Appl Ceram. 2015;114:436–441
  • Acosta M, Novak N, Jo W, et al. Relationship between electromechanical properties and phase diagram in the Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 lead-free piezoceramic. Acta Mater. 2014;80:48–55.
  • Zhang X, Wu L, Gao S, et al. Large electrocaloric effect in Ba(Ti1−xSnx)O3 ceramics over a broad temperature region. AIP Adv. 2015;5:047134.
  • Patel S, Chauhan A, Kundu S, et al. Tuning of dielectric, pyroelectric and ferroelectric properties of 0.715Bi0.5Na0.5TiO3-0.065BaTiO3-0.22SrTiO3 ceramic by internal clamping. AIP Adv. 2015;5:087145.
  • Puli VS, Kumar A, Katiyar R, et al. Dielectric breakdown of BaO–B2O3–ZnO–[(BaZr0.2Ti0.80)O3]0.85[(Ba0.70Ca0.30)TiO3]0.15 glass-ceramic composites. J Non-Cryst Solids. 2012;358:3510–3516.
  • Chaim R. Densification mechanisms in spark plasma sintering of nanocrystalline ceramics. Mater Sci Eng A. 2007;443:25–32.
  • Cross LE. Ferroelectric ceramics: tailoring properties for specific applications. In: Setter N, Colla EL, editors. Ferroelectric ceramics Switzerland: Birkhäuser Basel; 1993. p. 1–85.
  • Scott J. Applications of modern ferroelectrics. Science. 2007;315:954–959.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.