Publication Cover
Phase Transitions
A Multinational Journal
Volume 93, 2020 - Issue 9
137
Views
5
CrossRef citations to date
0
Altmetric
Articles

Phase stability, pressure-induced phase transition and electronic properties of AlX (X = P, As and Sb) compounds from first principle calculations.

, , , , &
Pages 843-855 | Received 08 May 2020, Accepted 02 Jul 2020, Published online: 20 Jul 2020

References

  • Vurgaftman I, Meyer JR, Ram-Mohan LR. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 2001;89:5815–5875. doi: 10.1063/1.1368156
  • Adachi S. Gaas and related materials: bulk semiconducting and superlattice properties. Singapore: World Scientific; 1994.
  • Ketterson AA, Masselink WT, Gedymin JS, et al. Characterization of InGaAs/AlGaAs pseudomorphic modulation-doped field-effect transistors. IEEE Trans. Electron. dev. ED. 1986;33:564–571. doi: 10.1109/T-ED.1986.22533
  • Ohnuma T, Nagano M, Nemoto K. Indirect-to-direct transition of (AlAs)n/(AlP)n strained short-period superlattices. Jpn. J. Appl. Phys. 2000;39:L972–L974. doi: 10.1143/JJAP.39.L972
  • Haberecht HRR, Middleton AE. Preparation and properties of aluminum antimonide. J Electrochem Soc 1958;105:533–540. doi: 10.1149/1.2428915
  • Xia Q, Xia H, Ruoff AL. Pressure-induced rocksalt phase of aluminum nitride: A metastable structure at ambient condition. J. Appl. Phys. 1993;73:8198–8200. doi: 10.1063/1.353435
  • Greene RG, Luo H, Ruoff AL. High pressure study of AlP: transformation to a metallic NiAs phase. J. Appl. Phys. 1994;76:7296–7299. doi: 10.1063/1.358015
  • Greene RG, Luo H, Li T, et al. Phase transformation of AlAs to NiAs structure at high pressure condition. Phys. Rev. Letters. 1994;72:2045–2048. doi: 10.1103/PhysRevLett.72.2045
  • Van Camp PE, Van Doren VE. High pressure phase transitions in aluminum phosphide. Solid State Commun. 1995;95:173–175. doi: 10.1016/0038-1098(95)00246-4
  • Mujica A, Needs RJ, Muñoz A. First-principles pseudopotential study of the phase stability of the III-V semiconductors GaAs and AlAs. Phys. Rev. B. 1995;52:8881–8892. doi: 10.1103/PhysRevB.52.8881
  • Van Camp PE, Van Doren VE, Devreese JT. High-pressure properties of wurtzite- and rocksalt-type Aluminum Nitride. Phys. Rev. B. 1991;44:9056–9059. doi: 10.1103/PhysRevB.44.9056
  • Rodrìguez-Hernández P, Muñoz A, Mujica A. High pressure phases of AlSb from ab-initio theory. Phys Status Solidi B. 1996;198:455–459. doi: 10.1002/pssb.2221980159
  • Greene RG, Luo H, Ghandehari K, et al. High pressure structural study of AlSb to 50 GPa. J Phys Chem Solids. 1995;56:517–520. doi: 10.1016/0022-3697(94)00231-2
  • Jamieson JC. Crystal structures at high pressures of metallic modifications of compounds of Indium, Gallium, and aluminum. Science. 1963;139:845–847. doi: 10.1126/science.139.3557.845
  • Yu SC, Spain IL, Skelton EF. High pressure phase transitions in tetrahedrally coordinated semiconducting compounds. Solid State Commun. 1978;25:49–52. doi: 10.1016/0038-1098(78)91168-7
  • Baublitz Jr M, Ruoff AL. X-ray diffraction data from the high pressure phase of AlSb. J Appl Phys 1983;54:2109–2110. doi: 10.1063/1.332263
  • Ves S, Strössner K, Cardona M. Pressure dependence of the optical phonon frequencies and the transverse effective charge of AlSb. Solid State Commun. 1986;57:483–486. doi: 10.1016/0038-1098(86)90613-7
  • Chelikowsky JR. High-pressure phase transitions in diamond and zinc-blende semiconductors. Phys. Rev. B. 1987;35:1174–1180. doi: 10.1103/PhysRevB.35.1174
  • Pawar P, Abdul Shukoor V, Singh S. Pressure induced phase transition of AlX (X = P, As) compounds under effect of temperature. Mater. Today Proceedings. 2018;5:2474–2478. doi: 10.1016/j.matpr.2017.11.028
  • Aouadi S, Rodriguez-Hernández P, Kassali K, et al. Lattice dynamics properties of zinc-blende and Nickel arsenide phases of AlP. Phys Lett A. 2008;372:5340–5345. doi: 10.1016/j.physleta.2008.06.010
  • Lakel S, Okbi F, Ibrir M, et al. Pressure effects on the elastic and lattice dynamics properties of AlP from first-principles calculations. AIP Conf. Proc. 2014;1653:020065-1–020065-7.
  • Zhang SB, Cohen Marvin L. High-pressure phases of III-V zinc-blende semiconductors. Phys. Rev. B. 1987;35:7604–7610. doi: 10.1103/PhysRevB.35.7604
  • Soma T, Matsuo Kagaya H. Prediction of high pressure NaCl phase of AlP, AlAs and AlSb compounds. Solid State Commun. 1984;50:1011–1013. doi: 10.1016/0038-1098(84)90277-1
  • Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:864–871. doi: 10.1103/PhysRev.136.B864
  • Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev A. 1965;140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133
  • Madsen GKH, Blaha P, Schwarz K, et al. Efficient linearization of the augmented plane-wave method. Phys. Rev. B. 2001;64:195134-1–195134-9.
  • Schwarz K, Blaha P, Madsen GKH. Electronic structure calculations of solids using the WIEN2k package for material science. Comput. Phys. Commun. 2002;147:71–76. doi: 10.1016/S0010-4655(02)00206-0
  • Blaha P, Schwarz K, Madsen GKH, et al. WIEN2k, an augmented-plane-wave + local orbitals program for calculating crystal properties (Karlheinz Schwarz, Techn. Universitat, Wien, Austria, 2001.
  • Wu Z, Cohen RE. More accurate generalized gradient approximation for solids. Phys. Rev. B. 2006;73:235116–1–235116-6.
  • Perdew JP, Burke S, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • El Haj Hassan F, Breidi A, Ghemid S, et al. First-principles study of the ternary semiconductor alloys (Ga,Al)(As,Sb). J Alloys Compd 2010;499:80–89. doi: 10.1016/j.jallcom.2010.02.121
  • Hamioud L, Boumaza A, Touam S, et al. First-principles calculations of the structural, electronic, optical and thermal properties of the BNxAs1-x alloys. Philos Mag 2016;96:1694–1711. doi: 10.1080/14786435.2016.1177669
  • Nemiri O, Boumaza A, Boubendira K, et al. First-principles calculations of the structural, electronic and optical properties of In1-xBxAsyP1-y quaternary alloys lattice matched to InP and BeS. Mater Sci Semicond Process 2015;36:27–35. doi: 10.1016/j.mssp.2015.03.016
  • Tran F, Blaha P. Accurate band gaps of semiconductors and insulators with semi local exchange-correlation potential. Phys. Rev. Lett. 2009;102:226401–226405. doi: 10.1103/PhysRevLett.102.226401
  • Dahliah D, Abu-Jafar MS, Mousa Ahmad A, et al. Theoretical investigation of the structural stabilities, elastic properties and band structure characteristics of platinum carbide. Phase Transitions. 2018;91:271–283. doi: 10.1080/01411594.2017.1372761
  • Serrano J, Rubio A, Hernandez E, et al. Theoretical study of the relative stability of structural phases in group-III nitrides at high pressures. Phys. Rev. B. 2000;62:16612–16623. and references cited therein. doi: 10.1103/PhysRevB.62.16612
  • Ploog KH, Brandt O, Yang H, et al. Interplay between growth kinetics and material quality of cubic GaN. Solid State Electron. 1997;41:235–237. doi: 10.1016/S0038-1101(96)00200-6
  • Murnaghan FD. Compressibility of media under extreme pressure. Proc Natl Acad Sci USA. 1944;30:244–255. doi: 10.1073/pnas.30.9.244
  • Annane F, Meradji H, Ghemid S, et al. First principle investigation of AlAs and AlP compounds and ordered AlAs1-xPx alloys. Comput Mater Sci 2010;50:274–278. doi: 10.1016/j.commatsci.2010.08.014
  • Briki M, Abdelouhab M, Zaoui A, et al. Relativistic effects on the structural and transport properties of III-V compounds: A first-principles study. Superlatt. Microstruct. 2009;45:80–90. doi: 10.1016/j.spmi.2008.12.022
  • K.H. Hellwege, O. Madelung, editors. Semi-Conductor, Intrinsic Properties of group IV elements and III-V, II-VI and I-VII Compounds, Landolt-Bornstein New Series, Group III, Vol. 22, Berlin: Pt Springer; 1982.
  • Numerical Data and Functional Relationships in Science and Technology-Crystal and Solid State Physics, Vol. 17a of Landolt-Bornstein, edited by O. Madelung (Springer, Berlin, 1984).
  • Wang HY, Li XS, Li CY, et al. First-principles study of phase transition and structural properties of AlAs. Mater. Chem. Phys. 2009;117:373–376. doi: 10.1016/j.matchemphys.2009.06.006
  • Liu GC, Lu ZW, Klein BM. Pressure-induced phase transformations in AlAs: comparison between ab initio theory and experiment. Phys. Rev. B. 1995;51:5678–5681. doi: 10.1103/PhysRevB.51.5678
  • Gupta DC, Kulshrestha S. Effect of high pressure on polymorphic phase transition and electronic structure of XAs (X = Al, Ga, In). Phase Transitions. 2009;82:850–865. doi: 10.1080/01411590903326628
  • Srivastava A, Tyagi N, Sharma US, et al. Pressure induced phase transformation and electronic properties of AlAs. Mater. Chem. Phys. 2011;125:66–71. doi: 10.1016/j.matchemphys.2010.08.072
  • Amrani B. First-principles investigation of AlAs at high pressure. Superlatt. Microstruct. 2006;40:65–76. doi: 10.1016/j.spmi.2006.05.005
  • Salehi H, Badehian HA, Farbod M. First principle study of the physical properties of semiconducting binary antimonide compounds under hydrostatic pressures. Mater. Sci. Semicond. Process. 2014;26:477–490. doi: 10.1016/j.mssp.2014.05.020
  • Rashid A, Fazal EA, Hashemifar SJ, et al. Physical properties of III-Antiminodes -a first principles study. Commun. Theor. Phys. 2009;52:527–533. doi: 10.1088/0253-6102/52/3/28
  • Wang SQ, Ye HQ. Plane-wave pseudopotential study on mechanical and electronic properties for IV and III-V crystalline phases with zinc-blende structure. Phys. Rev. B. 2002;66:235111-1–235111-7.
  • Wanagel J, Arnold V, Ruoff AL. Pressure transition of AlP to a conductive phase. J Appl Phys 1976;47:2821–2823. doi: 10.1063/1.323078
  • Mujica A, Rubio A, Muñoz A, et al. High-pressure phases of group-IV, III–V, and II–VI compounds. Rev. Mod. Phys. 2003;75:863–912. doi: 10.1103/RevModPhys.75.863
  • Weinstein BA. Proceedings of the 18th international conference on the physics of semiconductors, Stockholm; 1986 (unpublished).
  • Varshney D, Joshi G, Kaurav N, et al. Structural phase transition (zincblende-rocksalt) and elastic properties in AlY (Y = N, P and As) compounds: Pressure-induced effects. J Phys Chem Solids. 2009;70:451–458. doi: 10.1016/j.jpcs.2008.11.021
  • Wang HY, Li XS, Li CY, et al. First-principles study of phase transition and structural properties of AlAs. Mater. Chem. Phys. 2009;117:373–376. doi: 10.1016/j.matchemphys.2009.06.006
  • Srivastava A, Tyagi N, Sharma US, et al. Pressure induced phase transformation and electronic properties of AlAs. Mater. Chem. Phys. 2011;125:66–71. doi: 10.1016/j.matchemphys.2010.08.072
  • Cai J, Chen N. Theoretical study of pressure-induced phase transition in AlAs: from zinc-blende to NiAs structure. Phys. Rev. B. 2007;75:174116-1–174116-8.
  • Varshney D, Joshi G, Varshney M, et al. Pressure induced structural phase transition and elastic properties in BSb, AlSb, GaSb and InSb compounds. Physica B. 2010;405:1663–1676. doi: 10.1016/j.physb.2009.12.064
  • Adachi S. Properties of group-IV, III-V and II-VI semiconductors. Gunma University, Kiryu-shi: Wiley; 2005.
  • Nelmes RJ, McMahon MI, Belmonte SA. Nonexistence of the Diatomic β-Tin structure. Phys. Rev.Lett. 1997;79:3668–3671. doi: 10.1103/PhysRevLett.79.3668
  • Strossner K, Vess S, Kim CK, et al. Dependence of the direct and indirect gap of AlSb on hydrostatic pressure. Phys. Rev. B. 1986;33:4044–4053. doi: 10.1103/PhysRevB.33.4044
  • Wentzcovitch R, Cohen M, Lam P. Theoretical study of BN, BP, and BAs at high pressures. Phys. Rev. B. 1987;36:6058–6068. doi: 10.1103/PhysRevB.36.6058
  • Thompson MP, Auner GW, Zheleva TS, et al. Deposition factors and band gap of zinc-blende AlN. J. Appl. Phys. 2001;89:3331–3336. doi: 10.1063/1.1346999
  • Huang MZ, Ching WY. Calculation of optical excitations in cubic semiconductors. I. Electronic structure and linear response. Phys. Rev. B. 1993; 47: 9449–9463; Huang MZ, Ching WY. Calculation of optical excitations in cubic semiconductors. II. second-harmonic generation. Phys. Rev. B. 1993; 47: 9464–9478. doi: 10.1103/PhysRevB.47.9449
  • Sze SM. Physics of semiconductor device. New York: Wiley Interscience Publication; 1981, p. 848–849.
  • Reshak AH, Auluck S. Investigation of the electronic properties, first and second harmonic generation for AXIIIBXV zinc-blende semiconductors. Physica B. 2007;395:143–150. doi: 10.1016/j.physb.2007.03.012
  • Khanin DV, Kulkova SE. Electronic properties of III – V semiconductors. Russ. Phys. J. 2005;48:70–77. doi: 10.1007/s11182-005-0086-1
  • Monemar B. Fundamental energy gaps of AlAs and Alp from photoluminescence excitation spectra. Phys. Rev. B. 1973;8:5711–5718. doi: 10.1103/PhysRevB.8.5711
  • Wei SH, Nie X, Iskander G, et al. Breakdown of the band-gap-common-cation rule: the origin of the small band gap of InN. Phys. Rev. B. 2003;67:165209-1–165209-4.
  • Nemiri O, Oumelaz F, Boumaza A, et al. Structural, electronic and thermal properties of AlxGa1-xAs ternary alloys: Insights from DFT study. J. Mol. Graph. 2019;92:140–146. doi: 10.1016/j.jmgm.2019.07.011
  • Madelung O, Schultz M, Weiss H, editors. Physics of group IV elements and III–V compounds, of Landolt Bornstein, Numerical data and Functional relationships in Science and Technology, New Series, Group III, Vol. 17a, New York: Springer; 1982.
  • El Haj Hassan F, Postnikov AV, Pagès O. Structural, electronic, optical and thermal properties of AlxGa1−xAsySb1−y quaternary alloys: first-principles study. J Alloys Compd 2010;504:559–565. doi: 10.1016/j.jallcom.2010.05.161
  • Boubendira K, Bendaif S, Nemiri O, et al. Fundamental properties of zinc-blende AlSb, BSb and their Al1-x Bx Sb ternary alloys. Chin J Phys 2017;55:1092–1102. doi: 10.1016/j.cjph.2017.05.021
  • Dufek P, Blaha P, Schwarz K. Applications of Engel and Vosko’s generalized gradient approximation in solids. Phys. Rev. B. 1994;50:7279–7283. doi: 10.1103/PhysRevB.50.7279
  • Bachelet GB, Christensen NE. Relativistic and core-relaxation effects on the energy bands of gallium arsenide and germanium. Phys. Rev. B. 1985;31:879–887. doi: 10.1103/PhysRevB.31.879

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.