Publication Cover
Phase Transitions
A Multinational Journal
Volume 93, 2020 - Issue 10-11
156
Views
9
CrossRef citations to date
0
Altmetric
Articles

Structural, optical, and dielectric properties of Bi2O3-K2O-TiO2-P2O5 glasses and related glass-ceramics

ORCID Icon, , , , &
Pages 1030-1047 | Received 09 Jul 2020, Accepted 30 Sep 2020, Published online: 29 Oct 2020

References

  • Jlassi I, Sdiri N, Elhouichet H. Electrical conductivity and dielectric properties of MgO doped lithium phosphate glasses. J Non Cryst Solids. 2017;466–467:45–51.
  • Chen J-C, Ko C-L, Lin D-J, et al. In vivo studies of titanium implant surface treatment by sandblasted, acid-etched and further anchored with ceramic of tetracalcium phosphate on osseointegration. J Aust Ceram Soc. 2019;55:799–806.
  • Rao PS, Rajyasree C, Babu AR, et al. Effect of Bi2O3 proportion on physical, structural and electrical properties of zinc bismuth phosphate glasses. J Non Cryst Solids. 2011;357:3585–3591.
  • Proulx PP, Cormier G, Capobianco JA, et al. Raman and low frequency Raman spectroscopy of lead, zinc and barium metaphosphate glasses doped with Eu3+ ions. J Phys Condens Matter. 1994;6:275–283.
  • Brow RK, Tallant DR. Structural design of sealing glasses. J Non Cryst Solids. 1997;222:396–406.
  • Es-soufi H, Bih H, Azrour M, et al. Structure and some physical properties of the sodium ion conducting glasses inside the Na2O-Na2WO4-TiO2-P2O5 system. J Appl Surfaces Interfaces. 2018;4:1–3.
  • Laourayed M, El Moudane M, Guenbour A, et al. Glass-forming region, electrical and structural properties of BiPO4-NbOPO4-P2O5 (Bi2O3-Nb2O5-P2O5) glasses. J Mater. 2017;8:2932–2939.
  • Shih PY. Thermal, chemical and structural characteristics of erbium-doped sodium phosphate glasses. Mater Chem Phys. 2004;84:151–156.
  • Bih L, Abbas L, Nadiri A, et al. Investigations of molybdenum redox phenomenon in Li2O–MoO3–P2O5 phosphate glasses. J Mol Struct. 2008;872:1–9.
  • Jerroudi M, Bih L, Azrour M, et al. Investigation of novel low melting phosphate glasses inside the Na2O–K2O–ZnO–P2O5 system. J Inorg Organomet Polym Mater. 2020;30:532–542.
  • Shaim A, Et-tabirou M. Structural role of TiO2 and Bi2O3 in Na2O–Bi2O3–TiO2–P2O5 glasses. Phys Chem Glas. 2001;42:381–384.
  • Shaim A, Et-Tabirou M, Montagne L, et al. Role of bismuth and titanium in Na2O–Bi2O3–TiO2–P2O5 glasses and a model of structural units. Mater Res Bull. 2002;37:2459–2466.
  • Shaim A, Et-Tabirou M, Montagne L, et al. Molar volume, thermal properties and dc conductivity of Na2O-Bi2O3-TiO2-P2O5 glasses. Phys Chem Glas. 2003;44:26–29.
  • Elmoudane M, Belkhouaja M, Et-Tabirou M, et al. Glass transition (Tg) and dielectric constant (e’r) of Li3PO4-Pb3(PO4)2-BiPO4 (Li2O-PbO-Bi2O3-P2O5) glasses. Phase Transitions A Multinatl J. 2003;76:645–652.
  • Baia L, Stefan R, Kiefer W, et al. Structural investigations of copper doped B2O3–Bi2O3 glasses with high bismuth oxide content. J Non Cryst Solids. 2002;303:379–386.
  • Moguš-Milanković A, Šantić A, Ličina V, et al. Dielectric behavior and impedance spectroscopy of bismuth iron phosphate glasses. J Non Cryst Solids. 2005;351:3235–3245.
  • Tang A, Hashimoto T, Nasu H, et al. Sol–gel preparation and properties of TiO2–P2O5 bulk glasses. Mater Res Bul. 2005;40:55–66.
  • Lee I-H, Yu H, Lakhkar NJ, et al. Development, characterisation and biocompatibility testing of a cobalt-containing titanium phosphate-based glass for engineering of vascularized hard tissues. Mater Sci Eng C. 2013;33:2104–2112.
  • ElBatal HA, Khalil EMA, Hamdy YM. In vitro behavior of bioactive phosphate glass–ceramics from the system P2O5–Na2O–CaO containing titania. Ceram Int. 2009;35:1195–1204. doi:10.1016/j.ceramint.2008.06.004.
  • Kriltz A, Erdsack J, Müller M, et al. Glasses in the system K2O–TiO2–P2O5 close to KTiOPO4 composition. Part 1: Glass Forming Ability. Phys Chem Glas J Glas Sci Technol Part B. 2010;51:146–149.
  • Sayyed MI, El-Mesady IA, Abouhaswa AS, et al. Comprehensive study on the structural, optical, physical and gamma photon shielding features of B2O3-Bi2O3-PbO-TiO2 glasses using WinXCOM and Geant4 code. J Mol Struct. 2019;1197:656–665.
  • Rao CS, Seshulatha K, Gurupria YS, et al. Optical properties of Na2SO4–B2O3–P2O5 glasses doped with TiO2. Mater Today Proc. 2018;5:26217–26222. doi:10.1016/j.matpr.2018.08.070.
  • Rao PS, Krishna SBM, Yusub S, et al. Spectroscopic and dielectric investigations of tungsten ions doped zinc bismuth phosphate glass-ceramics. J Mol Struct. 2013;1036:452–463.
  • Bale S, Rahman S. Spectroscopic and physical properties of Bi2O3-B2O3-ZnO-Li2O glasses. Int Sch Res Not. 2012;2012:1–7.
  • Sinouh H, Bih L, Bouari AE, et al. Bao effect on the thermal properties of the phosphate glasses inside the Na2O–SrO–TiO2–B2O3–P2O5 system. J Non Cryst Solids. 2014;405:33–38. doi:10.1016/j.jnoncrysol.2014.08.031.
  • Luo Y-R. Comprehensive handbook of chemical bond energies. CRC press; Boca Raton: 2007.
  • Es-Soufi H, Bih L, Manoun B, et al. Structure, thermal analysis and optical properties of lithium tungsten-titanophosphate glasses. J Non Cryst Solids. 2017;463:12–18.
  • Elkhoshkhany N, Mohamed HM. UV–Vis-NIR spectroscopy, structural and thermal properties of novel oxyhalide tellurite glasses with composition TeO2-B2O3-SrCl2-LiF-Bi2O3 for optical application. Results Phys. 2019;13:102222.
  • Lakshminarayana G, Kaky KM, Baki SO, et al. Physical, structural, thermal, and optical spectroscopy studies of TeO2–B2O3–MoO3–ZnO–R2O (R=Li, Na, and K)/MO (M=Mg, Ca, and Pb) glasses. J Alloys Compd. 2017;690:799–816.
  • Brow RK. The structure of simple phosphate glasses. J Non Cryst Solids. 2000;263-264:1–28.
  • Haily E, Bih L, Jerroudi M, et al. Structural investigation of SrO-BaO-TiO2-B2O3-P2O5 glass-ceramics. Mater Today Proc. 2020. doi:10.1016/j.matpr.2020.07.688
  • Bih L, Bih H, Amalhay M, et al. Phosphate glass-glasses as new energy density dielectric materials. Procedia Eng. Elsevier. 2014;83:371–377.
  • Chahine A, Et-Tabirou M, Pascal JL. FTIR and Raman spectra of the Na2O–CuO–Bi2O3–P2O5 glasses. Mater Lett. 2004;58:2776–2780.
  • Haily E, Bih L, El bouari A, et al. Effect of BaO–Bi2O3–P2O5 glass additive on structural, dielectric and energy storage properties of BaTiO3 ceramics. Mater Chem Phys. 2020;241:122434. doi:10.1016/j.matchemphys.2019.122434.
  • Haily E, Bih L, El Bouari A, et al. Structural, optical, and dielectric properties of the BaO–TiO2–P2O5 glasses. J Aust Ceram Soc. 2020: 1–13. doi:10.1007/s41779-020-00473-1.
  • Han J, Xu M, Niu Y, et al. Cubic KTi2(PO4)3 as electrode materials for sodium-ion batteries. J Colloid Interface Sci. 2016;483:67–72.
  • Haily E, Bih L, Jerroudi M, et al. Structural and dielectric properties of K2O-TiO2-P2O5 glass and its associated glass-ceramic. Mater Today Proc. 2020. doi:10.1016/j.matpr.2020.04.339
  • Xue F, Li H, Zhu Y, et al. Solvothermal synthesis and photoluminescence properties of BiPO4 nano-cocoons and nanorods with different phases. J Solid State Chem. 2009;182:1396–1400.
  • Iliev K, Peshev P, Nikolov V, et al. Physicochemical properties of high-temperature solutions of the K2O-P2O5-TiO2 system suitable for the growth of KTiOPO4 (KTP) single crystals. J Cryst Growth. 1990;100:219–224.
  • Krishna GM, Veeraiah N, Venkatramaiah N, et al. Induced crystallization and physical properties of Li2O–CaF2–P2O5: TiO2 glass system: part I. Characterization, spectroscopic and elastic properties. J Alloys Compd. 2008;450:477–485.
  • Jerroudi M, Bih L, Haily E, et al. Optical and electrical properties of manganese doped-alkali metaphosphate glasses. Mater Today Proc. 2020. doi:10.1016/j.matpr.2020.04.765
  • Majhi K, Varma KBR. Dielectric relaxation in CaO–Bi2O3–B2O3 glasses. Int J Appl Ceram Technol. 2010;7:E89–E97.
  • Ali AA, Shaaban MH. Electrical properties and scaling behaviour of Sm3+ doped CaF2- bismuth borate glasses. Bull Mater Sci. 2011;34:491–498.
  • Mott NF, Davis EA. Electronic processes in non-crystalline materials. Oxford university press; Oxford: 2012.
  • Melo BMG, Graça MPF, Prezas PR, et al. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics. J Appl Phys. 2016;120:051701.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.