Publication Cover
Phase Transitions
A Multinational Journal
Volume 93, 2020 - Issue 10-11
453
Views
10
CrossRef citations to date
0
Altmetric
Articles

Annealing temperature investigation on electrodeposited Cu2O properties

ORCID Icon, , , , , , & show all
Pages 1089-1099 | Received 09 Sep 2020, Accepted 12 Oct 2020, Published online: 29 Oct 2020

References

  • Olsen LC, Addis FW, Miller W. Experimental and theoretical studies of Cu2O solar cells. Sol Cells. 1982;7:247–279. doi:10.1016/0379-6787(82)90050-3.
  • Sears WM, Fortin E. Preparation and properties of Cu2O/Cu photovoltaic cells. Sol Energy Mater. 1984;10:93–103. doi:10.1016/0165-1633(84)90011-X.
  • Rai BP. Cu2O solar cells: a review. Sol Cells. 1988;25:265–272. doi:10.1016/0379-6787(88)90065-8.
  • Balasubramaniam KR, Kao VM, Ravichandran J, et al. Ager III. Thin Solid Films. 2012;520:3914–3917.
  • Lin Y, Chen W-J, Lu J, et al. Growth and characterization of ZnO/ZnTe core/shell nanowire arrays on transparent conducting oxide glass substrates. Nanoscale Res Lett. 2012;7:401. doi:10.1186/1556-276X-7-401.
  • Mittiga A, Salza E, Sarto F, et al. Heterojunction solar cell with 2% efficiency based on a Cu2O substrate. Appl Phys Lett. 2006;88:163502. doi:10.1063/1.2194315.
  • Chatterjee S, Pal AJ. Introducing Cu2O thin films as a hole-transport layer in efficient planar perovskite solar cell structures. J Phys Chem C. 2016;120:1428–1437. doi:10.1021/acs.jpcc.5b11540.
  • Lin L, Jiang L, Li P, et al. A modeled perovskite solar cell structure with a Cu2O hole-transporting layer enabling over 20% efficiency by low-cost low-temperature processing. J Phys Chem Solids. 2019;124:205–211. doi:10.1016/j.jpcs.2018.09.024.
  • Figueiredo V, Elangovan E, Gonçalves G, et al. Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper. Appl Surf Sci. 2008;254:3949–3954. doi:10.1016/j.apsusc.2007.12.019.
  • Jeong SS, Mittiga A, Salza E, et al. Electrodeposited ZnO/Cu2O heterojunction solar cells. Electrochim Acta. 2008;53:2226–2231. doi:10.1016/j.electacta.2007.09.030.
  • Maruyama T. Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate. Sol Energy Mater Sol Cells. 1998;56:85–92. doi:10.1016/S0927-0248(98)00128-7.
  • Santra K, Sarkar CK, Mukherjee MK, et al. Copper oxide thin films grown by plasma evaporation method. Thin Solid Films. 1992;213:226–229. doi:10.1016/0040-6090(92)90286-K.
  • Grozdanov I. Electroless chemical deposition technique for Cu2O thin films. Mater Lett. 1994;19:281–285. doi:10.1016/0167-577X(94)90171-6.
  • Akimoto K, Ishizuka S, Yanagita M, et al. Thin film deposition of Cu2O and application for solar cells. Sol Energy. 2006;80:715–722. doi:10.1016/j.solener.2005.10.012.
  • Gershon T, Musselman KP, Marin A, et al. Thin-film ZnO/Cu2O solar cells incorporating an organic buffer layer. Sol Energy Mater Sol Cells. 2012;96:148–154. doi:10.1016/j.solmat.2011.09.043.
  • Hssi AA, Atourki L, Labchir N, et al. Structural and optical properties of electrodeposited Cu2O thin films. Mater Today: Proc. 2020;22:89–92. doi:10.1016/j.matpr.2019.08.100.
  • Tang Y, Chen Z, Jia Z, et al. Electrodeposition and characterization of nanocrystalline cuprous oxide thin films on TiO2 films. Mater Lett. 2005;59:434–438. doi:10.1016/j.matlet.2004.09.040.
  • Messaoudi O, Makhlouf H, Souissi A, et al. Correlation between optical and structural properties of copper oxide electrodeposited on ITO glass. J Alloys Compd. 2014;611:142–148. doi:10.1016/j.jallcom.2014.05.055.
  • Messaoudi O, assaker IB, Gannouni M, et al. Structural, morphological and electrical characteristics of electrodeposited Cu2O: effect of deposition time. Appl Surf Sci. 2016;366:383–388. doi:10.1016/j.apsusc.2016.01.035.
  • Mohd Rafie J, Mohd Shahadan MS, Nor Liza H, et al. Annealing effects on the properties of copper oxide thin films prepared by chemical deposition. Int J Electrochem Sci. 2011;6:6094–6104.
  • Armelao L, Barreca D, Bertapelle M, et al. A sol–gel approach to nanophasic copper oxide thin films. Thin Solid Films. 2003;442:48–52. doi:10.1016/S0040-6090(03)00940-4.
  • Mahalingam T, Dhanasekaran V, Sundaram K, et al. Characterization of electroplated ZnTe coatings. Ionics (Kiel). 2012;18:299–306. doi:10.1007/s11581-011-0623-6.
  • Powell D, Compaan A, Macdonald JR, et al. Raman-scattering study of ion-implantation-produced damage in Cu2O. Phys Rev B. 1975;12:20–25. doi:10.1103/PhysRevB.12.20.
  • Debbichi L, Marco de Lucas MC, Pierson JF, et al. Vibrational properties of CuO and Cu4O3 from first-principles calculations, and Raman and infrared spectroscopy. J Phys Chem C. 2012;116:10232–10237. doi:10.1021/jp303096m.
  • Petroff Y, Yu PY, Shen YR. Study of photoluminescence in Cu2O. Phys Rev B. 1975;12:2488–2495. doi:10.1103/PhysRevB.12.2488.
  • Xu JF, Ji W, Shen ZX, et al. Raman spectra of CuO nanocrystals. J Raman Spectrosc. 1999;30:413–415. doi:10.1002/(SICI)1097-4555(199905)30:5 < 413::AID-JRS387 > 3.0.CO;2-N.
  • Chen XK, Irwin JC, Franck JP. Evidence for a strong spin-phonon interaction in cupric oxide. Phys Rev B. 1995;52:R13130–R13133. doi:10.1103/PhysRevB.52.R13130.
  • Kliche G, Popovic ZV. Far-infrared spectroscopic investigations on CuO. Phys Rev B. 1990;42:10060–10066. doi:10.1103/PhysRevB.42.10060.
  • Tran TH, Nguyen MH, Nguyen THT, et al. Facile fabrication of sensitive surface enhanced Raman scattering substrate based on CuO/Ag core/shell nanowires. Appl Surf Sci. 2020;509:145325, doi:10.1016/j.apsusc.2020.145325.
  • Mageshwari K, Sathyamoorthy R. Physical properties of nanocrystalline CuO thin films prepared by the SILAR method. Mater Sci Semicond Process. 2013;16:337–343. doi:10.1016/j.mssp.2012.09.016.
  • Pierson JF, Wiederkehr D, Billard A. Reactive magnetron sputtering of copper, silver, and gold. Thin Solid Films. 2005;478:196–205. doi:10.1016/j.tsf.2004.10.043.
  • Bousbih R, Dimassi W, Haddadi I, et al. Silicon lifetime enhancement by SiNx:H anti-reflective coating deposed by PECVD using SiH4 and N2 reactive gas. Sol Energy. 2012;86:1300–1305. doi:10.1016/j.solener.2012.01.021.
  • Bielański A, Haber J. Oxygen in catalysis on transition metal oxides. Catal Rev. 1979;19:1–41. doi:10.1080/03602457908065099.
  • Wood DL, Tauc J. Weak absorption tails in amorphous semiconductors. Phys Rev B. 1972;5:3144–3151. doi:10.1103/PhysRevB.5.3144.
  • Heinemann M, Eifert B, Heiliger C. Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3. Phys Rev B. 2013;87:115111, doi:10.1103/PhysRevB.87.115111.
  • Çayir TaşdemiRci T. Copper oxide thin films synthesized by SILAR: role of varying annealing temperature. Electron Mater Lett. 2020;16:239–246. doi:10.1007/s13391-020-00205-4.
  • Aksoy S, Caglar Y, Ilican S, et al. Effect of heat treatment on physical properties of CdO films deposited by sol–gel method. Int J Hydrogen Energy. 2009;34:5191–5195. doi:10.1016/j.ijhydene.2008.09.057.
  • Salunkhe RR, Dhawale DS, Gujar TP, et al. Structural, electrical and optical studies of SILAR deposited cadmium oxide thin films: annealing effect. Mater Res Bull. 2009;44:364–368. doi:10.1016/j.materresbull.2008.05.010.
  • Ashcroft NW, Mermin ND. Solid state physics. New York: Holt, Rinehart and Winston; 1976.
  • El-Nahass MM, Attia AA, Salem GF, et al. Effect of vacuum annealing and substrate temperature on structural and optical properties of ZnIn2Se4 thin films. Phys B. 2013;425:23–30. doi:10.1016/j.physb.2013.05.012.
  • Aka B. Méthode Photométrique Et Digitale De Détermination De L’épaisseur Et Des Constantes Optiques D’une Couche Mince Absorbante, (2001) 9.
  • Abu-Zeid ME, Rakhshani AE, Al-Jassar AA, et al. Determination of the thickness and refractive index of Cu2O thin film using thermal and optical interferometry. Phys Status Solidi (a). 1986;93:613–620. doi:10.1002/pssa.2210930226.
  • Sdiri N, Boukhachem A, Dhahri E. Optical investigations of La0.7Ca0.3-xKxMnO3 (x = 0.00, 0.05 and 0.10) probed by spectroscopic ellipsometry. Ceram-Silik. 2012;56(2):7.
  • Mahalingam T, Chitra JSP, Rajendran S, et al. Potentiostatic deposition and characterization of Cu2O thin films. Semicond Sci Technol. 2002;17:565–569. doi:10.1088/0268-1242/17/6/311.
  • Li J, Mei Z, Ye D, et al. Engineering of optically defect free Cu2O enabling exciton luminescence at room temperature. Opt Mater Express. 2013;3:2072–2077. doi:10.1364/OME.3.002072.
  • Gastev SV, Kaplyanskii AA, Sokolov NS. Relaxed excitons in Cu2O. Solid State Commun. 1982;42:389–391. doi:10.1016/0038-1098(82)90160-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.