Publication Cover
Phase Transitions
A Multinational Journal
Volume 94, 2021 - Issue 3-4
209
Views
5
CrossRef citations to date
0
Altmetric
Articles

High-temperature transformation behavior of iron-doped titanium dioxide crystal structures

, , , , , & show all
Pages 219-235 | Received 25 Feb 2021, Accepted 11 May 2021, Published online: 19 May 2021

References

  • Smith SJ, Stevens R, Liu S, et al. Heat capacities and thermodynamic functions of TiO2 anatase and rutile: analysis of phase stability. Am Mineral. 2009;94:236–243.
  • Li B, Li H, Yang C, et al. Picosecond lifetime hot electrons in TiO2 nanoparticles for high catalytic activity. Catalysts. 2020;10(8):916.
  • Riaz S, Park SJ. An overview of TiO2-based photocatalytic membrane reactors for water and wastewater treatments. J Ind Eng Chem. 2020;84:23–41.
  • Huong NTM, Huong LTT, Hieu HC, et al. Optimization of nanocomposite TiO2/hydroxyl apatite for the photocatalytic paint. J Mater Sci Eng A. 2013;3(5):329–333.
  • Meng D, Wu X, Fan X, et al. High pressure response of rutile polymorphs and its significance for indicating the subduction depth of continental crust. Acta Geol Sin. 2008;82(2):371–376.
  • Wu J, Xu M, Lei S, et al. High electrocatalytic activity and stability of PtAg supported on rutile TiO2 for methanol oxidation. Int J Hydrogen Energy. 2020;45(23):12815–12821.
  • Xu X, Gao Z, Cui Z, et al. Synthesis of Cu2O octadecahedron/TiO2 quantum dot heterojunctions with high visible light photocatalytic activity and high stability. ACS Appl Mater Interfaces. 2016;8(1):91–101.
  • Drunka R, Grabis J, Jankovica D, et al. Synthesis, photocatalytic properties and morphology of various TiO2 nanostructures modified with gold. Proc Est Acad Sci. 2017;66(4):479–485.
  • Wang P, Qi C, Wen P, et al. Synthesis of Si, N co-doped nano-sized TiO2 with high thermal stability and photocatalytic activity by mechanochemical method. Nanomaterials (Basel). 2018;8(5):294.
  • Yugay O, Mikhailovskaya T, Saurambaeva L, et al. Influence of ZrO2 and ZrV2O7 on the polymorphic transformation of anatase into rutile. React Kinet Mech Catal. 2012;105(2):373–379.
  • Georgieva J, Valova E, Armyanov S, et al. A simple preparation method and characterization of B and N co-doped TiO2 nanotube arrays with enhanced photoelectrochemical performance. Appl Surf Sci. 2017;413:284–291.
  • Singh V, Rao A, Tiwari A, et al. Study on the effects of Cl and F doping in TiO2 powder synthesized by a sol-gel route for biomedical applications. J Phys Chem Solids. 2019;134:262–272.
  • Liu Y, Wei JH, Xiong R, et al. Enhanced visible light photocatalytic properties of Fe-doped TiO2 nanorod clusters and monodispersed nanoparticles. Appl Surf Sci. 2011;257(18):8121–8126.
  • Komaraiah D, Radha E, Kalarikkal N, et al. Structural, optical and photoluminescence studies of sol-gel synthesized pure and iron doped TiO2 photocatalysts. Ceram Int. 2019;45(18):25060–25068.
  • Khan MAM, Siwach R, Kumar S, et al. Role of Fe doping in tuning photocatalytic and photoelectrochemical properties of TiO2 for photodegradation of methylene blue. Opt Laser Technol. 2019;118:170–178.
  • Barkhade T, Banerjee I. Optical properties of Fe doped TiO2 nanocomposites synthesized by sol-gel technique. Mater Today Proc. 2019;18(Pt 3):1204–1209.
  • Villaluz FJA, Luna M, Colades JI, et al. Removal of 4-chlorophenol by visible-light photocatalysis using ammonium iron (II) sulfate-doped nano-titania. Process Saf Environ Prot. 2019;125:121–128.
  • Marić I, Dražić G, Ivanda M, et al. Impact of Fe (III) ions on the structural and optical properties of anatase-type solid solutions. J Mol Struct. 2019;1179:354–365.
  • Crisan M, Mardare D, Ianculescu A, et al. Iron doped TiO2 films and their photoactivity in nitrobenzene removal from water. Appl Surf Sci. 2018;455:201–215.
  • Stojadinović S, Radić N, Tadić N, et al. Influence of iron doping on photocatalytic activity of TiO2 coatings formed on titanium by plasma electrolytic oxidation. J Mater Sci: Mater Electron. 2018;29(11):9427–9434.
  • Babić B, Zarubica A, Arsić TM, et al. Iron doped anatase for application in photocatalysis. J Eur Ceram Soc. 2016;36(12):2991–2996.
  • Chakhari W, Naceur JB, Taieb SB, et al. Fe-doped TiO2 nanorods with enhanced electrochemical properties as efficient photoanode materials. J Alloys Compd. 2017;708:862–870.
  • Craciun E, Predoana L, Atkinson I, et al. Fe3+-doped TiO2 nanopowders for photocatalytic mineralization of oxalic acid under solar light irradiation. J Photochem Photobiol A. 2018;356:18–28.
  • Kaur T, Sraw A, Wanchoo RK, et al. Solar assisted degradation of carbendazim in water using clay beads immobilized with TiO2 & Fe doped TiO2. Sol Energy. 2018;162:45–56.
  • Tabasideh S, Maleki A, Shahmoradi B, et al. Sonophotocatalytic degradation of diazinon in aqueous solution using iron-doped TiO2 nanoparticles. Sep Purif Technol. 2017;189:186–192.
  • Horti NC, Kamatagi MD, Patil NR, et al. Synthesis and photoluminescence properties of titanium oxide (TiO2) nanoparticles: effect of calcination temperature. Optik. 2019;194:163070.
  • Phromma S, Wutikhun T, Kasamechonchung P, et al. Effect of calcination temperature on photocatalytic activity of synthesized TiO2 nanoparticles via wet ball milling sol-gel method. Appl Sci. 2020;10(3):993.
  • Rambabu Y, Jaiswal M, Roy SC. Effect of annealing temperature on the phase transition, structural stability and photo-electrochemical performance of TiO2 multi-leg nanotubes. Catal Today. 2016;278:255–261.
  • Wang W, Chen J, Zhang X, et al. Self-induced synthesis of phase-junction TiO2 with a tailored rutile to anatase ratio below phase transition temperature. Sci Rep. 2016;6(1):37–38.
  • Cai J, Cai R, Sun Z, et al. Confining TiO2 nanotubes in PECVD-enabled graphene capsules toward ultrafast K-Ion storage: In situ TEM/XRD study and DFT analysis. Nano-Micro Lett. 2020;12:314–327.
  • Wu J. In-situ, real-time TEM observation of pressure-induced anatase to alpha-PbO2-type phase transition in nanocrystalline TiO2. Microsc Microanal. 2012;18(S2):1710–1711.
  • Wu S, Luo X, Long Y, et al. Exploring the phase transformation mechanism of titanium dioxide by high temperature in situ method. IOP Conf Ser: Mater Sci Eng. 2019;493(1):012010.
  • Dias AG, Skakle JMS, Gibson IR, et al. In situ thermal and structural characterization of bioactive calcium phosphate glass ceramics containing TiO2 and MgO oxides: high temperature–XRD studies. J Non Cryst Solids. 2005;351:810–817.
  • Loan TT, Huong VH, Huyen NT, et al. Anatase to rutile phase transformation of iron-doped titanium dioxide nanoparticles: The role of iron content. Opt Mater (Amst). 2020;111:110651.
  • Haruna B, Ben K, Norifumi I, et al. Effect of TiO2 crystallite diameter on photocatalytic water splitting rate. Green Sustainable Chem. 2014;04(2):87–94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.