Publication Cover
Phase Transitions
A Multinational Journal
Volume 94, 2021 - Issue 5
274
Views
5
CrossRef citations to date
0
Altmetric
Articles

Metamagnetic transition and magnetocaloric properties of Ni45Mn42In13 Heusler alloy

ORCID Icon
Pages 289-297 | Received 13 Jan 2021, Accepted 13 May 2021, Published online: 25 May 2021

References

  • Graf T, Felser C, Parkin SSP. Simple rules for the understanding of Heusler compounds. Prog Solid State Chem. 2011;39:1–50. doi:10.1016/j.progsolidstchem.2011.02.001.
  • Felser C, Hirohata A. Heusler Alloys - properties, growth, applications. Springer Series Mater Sci. 2016;222:37–48. doi:10.1007/978-3-319-214498.
  • Ullakko K, Huang JK, Kantner C, et al. Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl Phys Lett. 1996;69:1966–1968, doi:10.1063/1.117637
  • Legarreta R LG, Flores C, Rosa WO, et al. Heusler alloy ribbons: structure, martensitic transformation, magnetic transitions and exchange bias effect, novel functional magnetic materials. Springer Series Mater Sci. 2016;231:83–114. doi:10.1007/978-3-319-26106-5_3.
  • Sasmaz M. The effect of X element on magnetic properties of NiMnX11 (X = In, Sn) Heusler alloys. J Supercond Novel Magn. 2020;33:3059–3064. doi:10.1007/s10948-020-05552-9
  • Bachaga T, Zhang J, Khitouni M, et al. NiMn-based Heusler magnetic shape memory alloys: a review. Int J Adv Manuf Technol. 2019;103:2761–2772. doi:10.1007/s00170-019-03534-3
  • Sokolovsky VV, Zagrebin MA, Buchelnikov VD. Novel achievements in the research field of multifunctional shape memory Ni-Mn-In and Ni-Mn-In-Z Heusler alloys. Shape Memory Alloys Prop Technol Opportunities Mater Sci Found. 2015;81: 38–76. Trans Tech Publications, Switzerland. doi:10.4028/www.scientific.net/MSFo.81-82.38.
  • Krenke T, Acet M, Wassermann EF, et al. Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni-Mn-Sn alloys. Phys Rev B. 2005;72:014412, doi:10.1103/PhysRevB.72.014412
  • Moya X, Mañosa L, Planes A, et al. Martensitic transition and magnetocaloric properties in Ni-Mn-X alloys. Mat Sci Eng A. 2006;438-440:911–915. doi:10.1016/j.msea.2006.02.053
  • Sutou Y, Imano Y, Koeda N, et al. Magnetic and martensitic transformations of Ni-Mn-X (X = In, Sn, Sb) ferromagnetic shape memory alloys. Appl Phys Lett. 2004;85:4358–4360. doi:10.1063/1.1808879
  • Krenke T, Acet M, Wassermann EF, et al. Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys. Phys Rev B. 2006;73:174413, doi:10.1103/PhysRevB.73.174413
  • Kainuma R, Imano Y, Ito W, et al. Magnetic-field-induced shape recovery by reverse phase transformation. Nature. 2006;439:957–960. doi:10.1038/nature04493
  • Sasmaz M. The effect of Mn content on thermal and magnetic properties of Mn50-xNi41+xSn9 (x = 0,2, 4) magnetic shape memory alloys. Süleyman Demirel Univ J Nat Appl Sci. 2019;23(1):15–19. doi:10.19113/sdufenbed.450724.
  • Sokolovskiy VV, Zagrebin MA, Buchelnikov VD. Novel achievements in the research field of multifunctional shape memory Ni- Mn-In and Ni-Mn-In-Z Heusler alloys. Mater Sci Found. 2015;81-82:38–76. doi:10.4028/www.scientific.net/MSFo.81-82.38
  • Khana M, Ali N, Stadler S. Inverse magnetocaloric effect in ferromagnetic Ni50Mn37+xSb13−x Heusler alloys. J Appl Phys. 2007;101:053919, doi:10.1063/1.2710779
  • Liu J, Gottschall T, Skokov KP, et al. Giant magnetocaloric effect driven by structural transitions. Nature Mater. 2012;11:620–626. doi:10.1038/nmat3334
  • Sharma VK, Chattopadhyay MK, Shaeb KHB, et al. Large magnetoresistance in Ni50Mn34In16 alloy. Appl Phys Lett. 2006;89:222509. doi:10.1063/1.2399365
  • Liu J, You X, Huang B, et al. Reversible low-field magnetocaloric effect in Ni-Mn-In-based Heusler alloys. Phys Rev Materials. 2019;3:084409. doi:10.1103/PhysRevMaterials.3.084409
  • Guillou F, Porcari G, Yibole H, et al. Taming the first-order transition in giant magnetocaloric materials. Adv Mater. 2014;26:2671–2675, doi:10.1002/adma.201304788
  • Mozharivskyj Y. Magnetocaloric effect and magnetocaloric materials. Ref Module Chem Mol Sci Chem Eng Elsevier. 2016. doi:10.1016/B978-0-12-409547-2.11643-9
  • Sharma VK, Chattopadhyay MK, Kumar R, et al. Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. J Phys: Condens Matter. 2007;19:496207. doi:10.1088/0953-8984/19/49/496207
  • Devi P, Mejía CS, Zavareh MG, et al. Improved magnetostructural and magnetocaloric reversibility in magnetic Ni-Mn-In shape-memory Heusler alloy by optimizing the geometric compatibility condition. Phys Rev Materials. 2019;3(6):062401. doi:10.1103/PhysRevMaterials.3.062401
  • Sharma VK, Chattopadhyay MK, Roy SB. Large inverse magnetocaloric effect in Ni50Mn34In16. J Phys D: Appl Phys. 2007;40:1869–1873. doi:10.1088/0022-3727/40/7/005
  • Bruno NM, Yegin C, Karaman I, et al. The effect of heat treatments on Ni43Mn42Co4Sn11 meta-magnetic shape memory alloys for magnetic refrigeration. Acta Mater. 2014;74:66–84. doi:10.1016/j.actamat.2014.03.020
  • Alarcos VS, Garcia JL, Unzueta I, et al. Magnetocaloric effect enhancement driven by intrinsic defects in a Ni45Co5Mn35Sn15 alloy. J Alloys Compd. 2019;774:586–592. doi:10.1016/j.jallcom.2018.10.016
  • Qu YH, Cong DY, Chen Z, et al. Large and reversible inverse magnetocaloric effect in Ni48.1Co2.9Mn35.0In14.0 metamagnetic shape memory microwire. Appl Phys Lett. 2017;111:192412. doi:10.1063/1.5000450
  • Lazpita P, Sasmaz M, Cesari E, et al. Martensitic transformation and magnetic field induced effects in Ni42Co8Mn39Sn11 metamagnetic shape memory alloy. Acta Mater. 2016;109:170–176. doi:10.1016/j.actamat.2016.02.046
  • Turabi AS, Lazpita P, Sasmaz M, et al. Magnetic and conventional shape memory behavior of Mn–Ni–Sn and Mn–Ni–Sn (Fe) alloys. J Phys D: Appl Phys. 2016;49:205002.
  • Sasmaz M, Chernenko V, Martinez E, et al. Structure and magnetic-field induced effects in Mn-Ni(Fe)-Sn metamagnetic shape memory alloys. Mater Today Proc. 2015;2:S849–S852. doi:10.1016/j.matpr.2015.07.415
  • Liu HS, Zhang CL, Han ZD, et al. The effect of Co doping on the magnetic entropy changes in Ni44-xCoxMn45Sn11 alloys. J Alloys Compd. 2009;467:27–30. doi:10.1016/j.jallcom.2007.11.137
  • Kainuma R, Imano Y, Ito W, et al. Metamagnetic shape memory effect in a heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy. Appl Phys Lett. 2006;88:192513, doi:10.1063/1.2203211
  • Lazpita P, Sasmaz M, Barandiaran JM, et al. Effect of Fe doping and magnetic field on martensitic transformation of Mn-Ni(Fe)-Sn metamagnetic shape memory alloys. Acta Mater. 2018;155:95–103. doi:10.1016/j.actamat.2018.05.052
  • Alia T, Gigli L, Ali A, et al. Structural transformation and inverse magnetocaloric effect in Ni50Mn33In17. J Magn Magn Mater. 2019;473:370–375. doi:10.1016/j.jmmm.2018.10.036
  • Amaral JS, Amaral VS. On estimating the magnetocaloric effect from magnetization measurements. J Magn Magn Mater. 2010;322:1552–1557. doi:10.1016/j.jmmm.2009.06.013
  • Caron L, Ou ZQ, Nguyen TT, et al. On the determination of the magnetic entropy change in materials with first-order transitions. J Magn Magn Mater. 2009;321:3559–3566. doi:10.1016/j.jmmm.2009.06.086.
  • Dwevedi S, Tiwari B. Martensitic transformations and magnetocaloric effect in Sn-doped NiMnIn shape memory alloy. J Alloys Compd. 2012;540:16–20. doi:10.1016/j.jallcom.2012.06.057

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.