Publication Cover
Phase Transitions
A Multinational Journal
Volume 95, 2022 - Issue 6
125
Views
0
CrossRef citations to date
0
Altmetric
Articles

Investigations on structure, dielectric and ferroelectric properties of SrBi2Ta2O9 ceramic via A-site defect engineering

ORCID Icon, ORCID Icon & ORCID Icon
Pages 445-455 | Received 04 Oct 2021, Accepted 21 Mar 2022, Published online: 05 Apr 2022

References

  • Kajewski D, Ujma Z. Electrical conductivity of SrBi2Ta2O9 ceramics. Ceram Int. 2013;39:8213–8218.
  • Coondoo I, Jha AK. Enhancement of ferroelectric and piezoelectric characteristics in europium substituted SrBi2Ta2O9 ferroelectric ceramics. Mater Lett. 2009;63:48–50.
  • Kajewski D, Ujma Z. Electrical properties of SrBi2(Nb0.5Ta0.5)2O9 ceramics. J Phys Chem Solids. 2010;71:24–29.
  • Senthil V, Badapanda T, Chithambararaj A, et al. Impedance spectroscopy and photocatalysis water splitting for hydrogen production with cerium modified SrBi2Ta2O9 ferroelectrics. Int J Hydrogen Energy. 2016;41:22856–22865.
  • Chen Y, Du Y, Fan D, et al. Study on the polarization enhancement mechanism and electrical properties of high temperature bismuth layered KxNa0.5-xBi4.46Ce0·04Ti4O15 + y ceramics. Ceram Int. 2021;47:29023–29029.
  • Chen Y, Zhang CC, Qin L, et al. Enhanced dielectric and piezoelectric properties in Na0.5Bi4.5Ti4O15 ceramics with Pr-doping. Ceram Int. 2018;44:18264–18270.
  • Coondoo I, Jha AK, Agarwal SK. Structural, dielectric and electrical studies in tungsten doped SrBi2Ta2O9 ferroelectric ceramics. Ceram Int. 2007;33(1):41–47.
  • Wang D-S. Effect of annealing atmosphere on volatility of Bi in SrBi2Ta2O9 thin films. J Ceram Process Res. 2014;15:116–119.
  • Kitamura A, Noguchi Y, Miyayama M. Polarization properties of praseodymium-modified SrBi 2Ta 2O 9 ceramics and thin films prepared by sol–gel method. Mater Lett. 2004;58:1815–1818.
  • Sridarane R, Subramanian S, Janani N, et al. Investigation on microstructure, dielectric and impedance properties of Sr1-xBi2+(2/3)x(VxTa1-x) 2O9 [x = 0, 0.1 and 0.2]ceramics. J Alloys Compd 2010;492(1):642–648.
  • Senthil V, Panigrahi S. Dielectric, ferroelectric, impedance and photocatalytic water splitting study of Y3 + modified SrBi2Ta2O9 ferroelectrics. Int J Hydrog Energy. 2019;44(33):18058–18071.
  • Wei T, Zhao CZ, Zhou QJ, et al. Bright green upconversion emission and enhanced ferroelectric polarization in Sr1−1.5xErxBi2Nb2O9. Opt Mater. 2014;36:1209–1212.
  • Sugandha S, Jha AK. Effect of holmium substitution on electrical properties of strontium bismuth tantalate ferroelectric ceramics. Ceram Int. 2013;39:9397–9403.
  • Senthil V, Badapanda T, Chandrabose A, et al. Dielectric and ferroelectric behavior of cerium modified SrBi2Ta2O9 ceramic. Mater Lett. 2015;159:138–141.
  • Zhong Y, Sun P, Gao X, et al. Synthesis and optical properties of new red-emitting SrBi2Ta2O9:Eu3 + phosphor application for w-LEDs commercially based on InGaN. J Lumin. 2019;212:45–51.
  • Zhong Y, Deng B, Gao X, et al. High thermally Sm3+-activated SrBi2Ta2O9 orange-red phosphor: preparation, characterization, and optical properties. J Lumin. 2019;215:116648.
  • Nayak P, Badapanda T, Panigrahi S. Dielectric and ferroelectric properties of lanthanum modified SrBi4Ti4O15 ceramics. Mater Lett. 2016;172:32–35.
  • Sahu R, Kumar P. Microstructural, dielectric and ferroelectric properties of Sr0.8Bi2.15Ta2O9 ceramics synthesized by microwave processing technique. Phase Transit. 2020;93:91–99.
  • Nayak P, Badapanda T, Panigrahi S. Effect of lanthanum modification on dielectric and conduction behaviour of SrBi4Ti4O15 ceramic. AIP Conf Proc. 2017;1832:030017.
  • Miyayama M, Noguchi Y. Polarization properties and oxygen-vacancy distribution of SrBi2Ta2O9 ceramics modified by Ce and Pr. J Eur Ceram Soc. 2005;25:2477–2482.
  • Zhu JS, Qin HX, Bao ZH, et al. X-ray diffraction and Raman scattering study of SrBi2Ta2O9 ceramics and thin films with Bi3TiNbO9 addition. Appl Phys Lett. 2001;79:3827.
  • Shannon RD. Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 1993;73:348–366.
  • Verma M, Sreenivas K, Gupta V. Influence of La doping on structural and dielectric properties of SrBi2Nb2O9 ceramics. J Appl Phys. 2009;105:024511.
  • Sun L, Feng C, Chen L, et al. Dielectric and piezoelectric properties of SrBi2−xSmxNb2O9 (x = 0, 0.05, 0.1, 0.2, 0.3, and 0.4) ceramics. J Am Ceram Soc 2007;90:3875–3881.
  • Praharaj S, Rout D, Anwar S, et al. Polar nano regions in lead free (Na0.5Bi0.5)TiO3-SrTiO3-BaTiO3 relaxors: An impedance spectroscopic study. J Alloys Compd. 2017;706:502–510.
  • Park BH, Hyun SJ, Bu SD, et al. Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12. Appl Phys Lett. 1999;74:1907.
  • Afqir M, Tachafine A, Fasquelle D, et al. Structural, electric and dielectric properties of Eu-doped SrBi 2 Nb 2 O 9 ceramics obtained by co-precipitation route. Process Appl Ceram. 2018;12:72–77.
  • Adak MK, Mukherjee A, Chowdhury A, et al. Dielectric anomaly, diffusivity and impedance behavior of transition metal substituted SrBi2NbTaO9 ferroelectric nano-ceramics prepared by chemical route. Physica B Condens. Matter. 2019;553:26–35.
  • Kannan BR, Venkataraman BH. Effect of rare earth ion doping on the structural, microstructural and diffused phase transition characteristics of BaBi2Nb2O9 relaxor ferroelectrics. Ceram Int. 2014;40:16365–16369.
  • Gupta P, Mahapatra PK, Choudhary RNP. Structural and electrical characteristics of Gd3 + and Dy3 + based bismuth layer structured ferroelectric ceramics. Solid State Sci. 2021;118:106628.
  • Noguchi Y, Miwa I, Goshima Y, et al. Defect control for large remanent polarization in bismuth titanate ferroelectrics - doping effect of higher-valent cations. Jpn J Appl Phys. 2000;39:L1259.
  • Friessnegg T, Aggarwal S, Ramesh R, et al. Vacancy formation in (Pb,La)(Zr,Ti)O3 capacitors with oxygen deficiency and the effect on voltage offset. Appl Phys Lett 2000;77:127.
  • Coondoo I, Jha AK. Investigations of structural, dielectric and ferroelectric behavior of europium substituted SrBi2Ta2O9 ferroelectric ceramics. Solid State Commun. 2007;142:561–565.
  • Khokhar A, Mahesh MLV, James AR, et al. Sintering characteristics and electrical properties of BaBi4Ti4O15 ferroelectric ceramics. J Alloys Compd. 2013;581:150–159.
  • Gupta P, Mahapatra PK, Choudhary RNP. Structural and electrical characteristics of rare-earth modified bismuth layer structured compounds. J Alloys Compd. 2021;863:158457.
  • Badapanda T, Nayak P, Mishra SR, et al. Investigation of temperature variant dielectric and conduction behaviour of strontium modified BaBi4Ti4O15 ceramic. J Mater Sci Mater Electron. 2019;30:4. 2019;30:3933–3941.
  • Saparjya S, Badapanda T, Behera S, et al. Effect of gadolinium on the structural and dielectric properties of BCZT ceramics. Phase Transit. 2020;93:245–262.
  • Khokhar A, Goyal PK, Thakur OP, et al. Influence of lanthanum distribution on dielectric and ferroelectric properties of BaBi4-xLaxTi4O15 ceramics. Mater Chem Phys. 2015;152:13–25.
  • Dhahri A, Dhahri E, Hlil EK. Electrical conductivity and dielectric behaviour of nanocrystalline La 0.6 Gd 0.1 Sr 0.3 Mn 0.75 Si 0.25 O 3. RSC Adv. 2018;8:9103–9111.
  • Jardiel T, Caballero AC, Villegas M. Electrical properties in WO3 doped Bi4Ti3O12 materials. J Eur Ceram Soc. 2007;27:4115–4119.
  • Peláiz-Barranco A, Guerra JDS. Dielectric relaxation related to single-ionized oxygen vacancies in (Pb1−xLax)(Zr0.90Ti0.10)1−x/4O3 ceramics. Mater Res Bull. 2010;45:1311–1313.
  • Li Q, Wang H, Fan H, et al. Dielectric properties and electrical conduction of La2O3-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics. Appl Phys A. 2013;114(2):551–558.
  • Zhang TF, Tang XG, Liu QX, et al. Oxygen-vacancy-related relaxation and conduction behavior in (Pb1-xBax)(Zr0.95Ti0.05)O3 ceramics. AIP Adv. 2014;4:107141.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.