Publication Cover
Phase Transitions
A Multinational Journal
Volume 95, 2022 - Issue 8-9
77
Views
3
CrossRef citations to date
0
Altmetric
Articles

Optical and electrical properties of GaZnO films deposited by co-sputtering method on two types of substrates

, , , & ORCID Icon
Pages 581-595 | Received 10 Jan 2022, Accepted 22 Jun 2022, Published online: 21 Jul 2022

References

  • Yang J, Jiang Y, Li L, et al. Structural, morphological, optical and electrical properties of Ga-doped ZnO transparent conducting thin films. Appl Surf Sci. 2017;421:446–452. doi:10.1016/j.apsusc.2016.10.079.
  • Kim YS, Hwang WJ, Eun KT, et al. Mechanical reliability of transparent conducting IZTO film electrodes for flexible panel displays. Appl Surf Sci. 2011;257:8134–8138. doi:10.1016/j.apsusc.2011.04.123.
  • Park JW, Lee GH, Kwon YY, et al. Enhancement in light extraction efficiency of organic light emitting diodes using double-layered transparent conducting oxide structure. Org Electron. 2014;15:2178–2183. doi:10.1016/j.orgel.2014.06.011.
  • Fäy S, Steinhauser J, Oliveira N, et al. Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells. Thin Solid Films. 2007;515:8558–8561. doi:10.1016/j.tsf.2007.03.130.
  • Mozammel M, Najibi Ilkhechi1 NN, Ghezelbash B, et al. Antibacterial and heavy ion removal properties of La- and Ti-doped ZnO nanoparticles. Mater Res Express. 2019;6:085010, Materials Research Express, Volume 6, Number 8.
  • Mozammel M, Ilkhechi NN, Tanouraghaj EF, et al. Evaluation of the effect of high concentration of dopant (Cr, Sn) on structural, optical, and wettability properties of ZnO thin films. J Aust Ceram Soc. 2019;55:999–1007.
  • Ilkhechi NN, Ghobadi N, Khazaie F, et al. The effect of Sn/Si dopant on optical and structural properties of nanostructured zinc oxide thin films. Silicon. 2018;10:503–508.
  • Moezzi A, McDonagh AM, Cortie MB. Zinc oxide particles: synthesis, properties and applications. Chem Eng J. 2012;185-186:1–22.
  • Brown HE. Zinc oxide rediscovered; studies on the preparation of zinc oxide from galvanizing plant waste. New York (NY): The New Jersey Zinc Company; 1957.
  • Michał AB. ZnO as a functional material: a review. Crystals. 2019;9:505–534. doi:10.3390/cryst9100505.
  • Morkoç H, Özgür Ü. Zinc oxide: fundamentals, materials and device technology. Weinheim: Wiley; 2009. Corpus ID: 136766400.
  • Thomas DG. The exciton spectrum of zinc oxide. J Phys Chem Solids. 1960;15:86–96.
  • Vigué F, Vennéguès P, Deparis C, et al. Growth modes and microstructures of ZnO layers deposited by plasma-assisted molecular-beam epitaxy on (0001) sapphire. J Appl Phys. 2001;90:5115–5119. doi:10.1063/1.1412572.
  • Yua X, Maa J, Jia F, et al. Effects of sputtering power on the properties of ZnO: Ga films deposited by rf magnetron-sputtering at low temperature. J Cryst Growth. 2005;274:474–479.
  • Song PK, Atanabea MW, Kon M, et al. Electrical and optical properties of gallium-doped zinc oxide films deposited by dc magnetron sputtering. Thin Solid Films. 2002;411:82–86.
  • Yen WT, Lin YC, Yao PC, et al. Growth characteristics and properties of ZnO:Ga thin films prepared by pulsed DC magnetron sputtering. Appl Surf Sci. 2010;256:3432–3437.
  • Ko HJ, Chen YF, Hong SK, et al. Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy. Appl Phys Lett. 2000;77:3761–3763.
  • Pugalenthi AS, Balasundaraprabhu R, Gunasekaran V, et al. Effect of thickness on the structural, optical and electrical properties of RF magnetron sputtered GZO thin films. Mater Sci Semicond Process. 2015;29:176–182.
  • Fortunato E, Assunção V, Gonçalves A, et al. High quality conductive gallium-doped zinc oxide films deposited at room temperature. Thin Solid Films. 2004;451-452:443–447.
  • Castro MV, Tavares CJ. Dependence of Ga-doped ZnO thin film properties on different sputtering process parameters: substrate temperature, sputtering pressure and bias voltage. Thin Solid Films. 2015;586:13–21.
  • Ma QB, Ye ZZ, He HP, et al. Preparation and characterization of transparent conductive ZnO:Ga films by DC reactive magnetron sputtering. Mater Charact. 2008;59:124–128.
  • Assunção V, Fortunato E, Marques A. Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature. Thin Solid Films. 2003;427:401–405.
  • Ma QB, Ye ZZ, He HP, et al. Influence of Ar/O2 ratio on the properties of transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering. Mater Lett. 2007;61:2460–2463.
  • Bie X, Lu JG, Gong L, et al. Transparent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering at low temperature. Appl Surf Sci. 2009;256:289–293.
  • ChY T, KSh F, ChM L. Synthesis and characterization of sol–gel derived gallium-doped zinc oxide thin films. J Alloys Compd. 2012;512:216–222.
  • Lee JH, Kim YY, Cho HK. Microstructural characteristics and crystallographic evolutions of Ga-doped ZnO films grown on sapphire substrates at high temperatures by RF magnetron sputtering. J Cryst Growth. 2009;311:4641–4646.
  • Nayak PK, Yang J, Kim J, et al. Spin-coated Ga-doped ZnO transparent conducting thin films for organic light-emitting diodes. J Phys D: Appl Phys. 2009;035102(42):3727–3733.
  • Hasaneen MF, Abd El-Raheem MM, Mahrous RA. Effect of RF power of Al2O3 target on the physical properties of aluminum-doped zinc oxide films. Appl Phys A. 2020;126:1–10. doi:10.1007/s00339-020-04021-3.
  • Hasaneen MF, Ali HM, Abd El-Raheem MM, et al. Structure and optical properties of thermally evaporated Te doped ZnSe thin films. Mater Sci Eng B. 2020;262:114704.
  • Ateyyah M, Abd El-Raheem MM, Abdel-Wahab F. Effect of thermal annealing on structural, optical and electrical properties of transparent Nb2O5 thin films. J Ovonic Res. 2017;13:112–118.
  • Alomairya S, Abdel- Wahab F, Ali HM, et al. Morphological and optical characterization of Mg-ZnO thin films deposited by Co-magnetron sputtering technique. Chalcogenide Letter. 2017;12:533–547.
  • El-Raheem MM. A, Amin SA, Alharbi MA, et al. Structural and optical characterization of Sb-doped ZnO co-sputtered thin films. J Opt Technol. 2016;83:375–384.
  • Ali HM, Abd El-Raheem MM, Megahed NM. Optimization of the optical and electrical properties of electron beam evaporated aluminium-doped Zn oxide films for opto-electronic applications. J Phys Chem Solids. 2006;67:1823–1829.
  • Mohamed HA, Ali HM, Mohamed SH, et al. Transparent conducting ZnO-CdO thin films deposited by e-beam evaporation technique. Eur Phys J Appl Phys. 2006;34:7–12.
  • Hakeem AM. A, Ali HM, Abd El-Raheem MM, et al. Study the effect of type of substrates on the microstructure and optical properties of CdTe thin films. Optik–Int J Light Electron Opt. 2021;225:165390. doi:10.1016/j.ijleo.2020.165390.
  • Park JH, Ahn KJ, Na SI, et al. Effects of deposition temperature on characteristics of Ga-doped ZnO film prepared by highly efficient cylindrical rotating magnetron sputtering for organic solar cells. Sol Energy Mater Sol Cells. 2011;95:657–663.
  • Parthiban R, Balamurugan D, Jeyaprakash BG. Spray deposited ZnO and Ga doped ZnO based DSSC with bromophenol blue dye as sensitizer: efficiency analysis through DFT approach. Mater. Sci Semicond Process. 2015;31:471–477.
  • Asahara H, Takamizu D, Inokuchi A, et al. Characterization of MgZnO films grown by plasma enhanced metal-organic chemical vapor deposition. Thin Solid Films. 2010;518:2953–2956.
  • Zou YS, Wang SL, Yang H, et al. Effect of substrate temperature on microstructure and optical properties of Ga doped ZnO films deposited by pulsed laser deposition. Surf Eng. 2015;31:302–307. doi:10.1179/1743294414Y.0000000440.
  • Wang GG, Zeng J, Han JC, et al. Highly transparent and conductive Ga-doped ZnO films with good thermal stability prepared by dual-target reactive sputtering. Mater Lett. 2014;137:307–310.
  • Cheong KY, Muti N, Ramanan SR. Electrical and optical studies of ZnO:Ga thin films fabricated via the sol–gel technique. Thin Solid Films. 2002;410:142–146.
  • Singh D, Singh S, Kumar U, et al. Transparent conducting Ga-doped ZnO thin films grown by reactive co-sputtering of Zn and GaAs. Thin Solid Films. 2014;555:126–130.
  • Akl AA, Aly SA, Howari H. Structural characterisation and optical properties of annealed ZnSSe thin films. Chalco Lett. 2016;13:299–306.
  • Klug HP, Alexander LE. X-ray diffraction procedures. New York: Wiley; 1954.
  • Bilgin V, Kose S, Atay F, et al. The effect of substrate temperature on the structural and some physical properties of ultrasonically sprayed CdS films. Mater Chem Phys. 2005;94:103–108.
  • Khan ZR, Zulfequar M, Khan MS. Optical and structural properties of thermally evaporated cadmium sulphide thin films on silicon (100) wafers. Sci Eng. 2010;174:145–149.
  • Tsay CY, Wu CW, Lei CM, et al. Microstructural and optical properties of Ga-doped ZnO semiconductor thin films prepared by sol–gel process. Thin Solid Films. 2010;519:1516–1520.
  • Hu J, Gordon RG. Atmospheric pressure chemical vapor deposition of gallium doped zinc oxide thin films from diethyl zinc, water, and triethyl gallium. J Appl Phys. 1992;72:5381–5392.
  • Joseph M, Tabata H, Kawai T. Jpn. p-type electrical conduction in ZnO thin films by Ga and N codoping. J Appl Phys. 1999;38:1207.
  • Roth AP, webb JB, Williams DF. Absorption edge shift in ZnO thin films at high carrier densities. Solid State Commun. 1981;39:1269–1271.
  • You ZZ, Hua GJ. Refractive index, optical bandgap and oscillator parameters of organic films deposited by vacuum evaporation technique. Vacuum. 2009;83:984–988.
  • Moss TS. Optical properties of semiconductors. New York: Academic Press; 1959; 279 pages.
  • Shokr E. Optical parameters of as-deposited and annealed GeSe0.5Te3.5 films. J Phys Chem Solids. 1992;53:1215–1219.
  • Yakuphanoglu F, Sekerci M, Ozturk OF. The determination of the optical constants of Cu(II) compound having 1-chloro-2,3-o-cyclohexylidinepropane. thin film. Opt Commun. 2004;239:275–280.
  • Farag AAM, Abdel-Rafea M, Roushdy N, et al. Influence of Cd-content on structural and optical dispersion characteristics of nanocrystalline Zn1−xCdxS (0 ⩽ x ⩽ 0.9) films. J Alloys Compd. 2015;621:434–440.
  • Mohamed SH, Shaaban ER. Investigation of the refractive index and dispersion parameters of tungsten oxynitride thin films. Mater Chem Phys. 2010;121:249–253.
  • Jenkins FA, White HE. Fundamentals of optics. NewYork: McGraw-Hill; 1957.
  • Yang S, Vishnu AK. 2006. US Patent 7002202.
  • Barnat EV, Lu TM. Pulsed sputtering and pulsed bias sputtering. Boston (MA): Kluwer Academic Publishers, Springer; 2003. p. 109–128. doi:10.1007/978-1-4615-0411-5_7.
  • Hasaneen MF, Alrowaili ZA, Mohamed WS. Structure and optical properties of polycrystalline ZnSe thin films: validity of Swanepol’s approach for calculating the optical parameters. Mater Res Express. 2020;7:016422, doi:10.1088/2053-1591/ab6779.
  • Chowdhury MT, Zubair MA, Takeda H, et al. Optical and structural characterization of ZnSe thin film fabricated by thermal vapour deposition technique. AIMS Mater Sci. 2017;4:1095–1121.
  • Tsay CY, Fan KS, Lei CM. Synthesis and characterization of sol-gel derived gallium-doped zinc oxide thin films. J Alloys Compd. 2012;512:216–222.
  • Athar J. Preparation and study of the structural, optical and electrical properties of Cu(In,Ga)Se2. Thin Films Turk J Phys. 2007;31:287–294.
  • Mott NF, Davis EA. Electronic process in non crystalline materials. Oxford: Clarendon Press; 1979.
  • Huang H, Zhang L, Wang Y, et al. Changes of optical, dielectric, and structural properties of Si15Sb85 phase change memory thin films under different initializing laser power. J Alloys Comp. 2011;509:5050–5054.
  • Huang FX, Wu YQ, Gu DH, et al. Optical parameters and absorption of copper (II)-azo complexes thin films as optical recording media. Thin Solid Films. 2005;483:251–256.
  • El-Nahass MM, El-Gohary Z, Soliman HS. Structural and optical studies of thermally evaporated CoPc thin films. Opt,Laser Technol. 2003;35:523–531.
  • Ashery A, Farag AAM, Shenashen MA. Optical absorption and dispersion analysis based on single-oscillator model of polypyrrole (PPy) thin film. Synth Met. 2012;162:1357–1363.
  • Crovettoa A, Huss-Hansena MK, Hansen O. How the relative permittivity of solar cell materials influences solar cell performance. Sol Energy. 2017;149:145–150.
  • Yahia IS, Zahran HY, Alamri FH. Spectrophotometric calculations of optical linearity and nonlinearity of nanostructured Pyronin Y/FTO optical system for optoelectronic applications. Synth Met. 2016;222:186–191.
  • Wakkad MM, Shokr E, Mohammed SH. Optical and calorimetric studies of Ge–Sb–Se glasses. J Non-Cryst Solids. 2000;265:157–166.
  • Pankove JI. Optical processes in semiconductors. NewYork: Dover Publications, Inc; 1975; 91.
  • Farag AAM, Yahia IS. Structural, absorption and optical dispersion characteristics of rhodamine B thin films prepared by drop casting technique. Opt Commun. 2010;283:4310–4317.
  • Wemple SH. Optical oscillator strengths and excitation energies in solids, liquids, and molecules. J Chem Phys. 1977;67:2151.
  • Domenico MD. Material dispersion in optical fiber waveguides. J Appl Opt. 1972;11:652.
  • Wemple SH, Domenico MD. Behavior of the electronic dielectric constant in covalent and ionic materials. Phys Rev. 1971;B3:1338–1351.
  • Dykman MI. The roots of polaron theory. Phys Today. 2015;68(4):10–11.
  • Agbo PE, Nwofe PA, Ede MN. Optical properties of PdS:AL thin films prepared by solution groth technique. J Non-Oxide Glas. 2016;8:85–91.
  • Nasrin R, Kabir H, Akter H, et al. Effect of film thickness on topographic, microstructural, optical and dielectric behaviour of PPMBA thin films. Results Phys. 2020;19:103357.
  • Khatibani AB, Rozati SM. Optical and morphological investigation of aluminium and nickel oxide composite films deposited by spray pyrolysis method as a basis of solar thermal absorber.Indian academy of sciences. Bull Mater Sci. 2015;38:319–326.
  • Luth H. Solid surfaces, interfaces and thin films. 4th ed. Cham: Springer; 2001.
  • French RH, Mullejans H, Jones DJ. Optical properties of aluminum oxide: determined from vacuum ultraviolet and electron energy-loss spectroscopies. J Am Ceram Soc. 1998;81:2549–2557.
  • Samantaray CB, Sim H, Hwang H. First-principles study of electronic structure and electron energy-loss-spectroscopy (EELS) of transition-metal aluminates as high-k gate dielectrics. Appl. Surf. Sci. 2005;242:121–128.
  • Abdullah AQ. Surface and volume energy loss, optical conductivity of rhodamine 6G dye (R6G). Chem Mater. 2013;3: 56-63.
  • Pankove JI. Optical processes in semiconductors. New York: Dover Publication Institute; 1971.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.