Publication Cover
Phase Transitions
A Multinational Journal
Volume 95, 2022 - Issue 8-9
158
Views
1
CrossRef citations to date
0
Altmetric
Articles

Phase evolution and enhanced electrical properties in Ba0.85Ca0.15Zr0.10Ti0.90O3 lead-free ceramics prepared at different sintering temperatures

, , , &
Pages 609-625 | Received 09 Feb 2022, Accepted 02 Jul 2022, Published online: 18 Jul 2022

References

  • Bijalwan V, Tofel P, Spotz Z, et al. Processing of 0.55(Ba0.9Ca0.1)TiO3-0.45Ba(Sn0.2Ti0.8)O3 lead-free ceramics with high piezoelectricity. J Am Ceram Soc. 2020;103:4611–4624.
  • Zhu LF, Zhang BP, Zhao XK, et al. Phase transition and high piezoelectricity in (Ba, Ca)(Ti1-xSnx)O3 lead-free ceramics. Appl Phys Lett. 2013;103(7):072905.
  • Zhou C, Liu WF, Xue DZ, et al. Triple-point type morphotropic phase boundary based large piezoelectric Pb-free material Ba(Ti0.8Hf0.2)O3-(Ba0.7Ca0.3)TiO3. Appl Phys Lett. 2012;100:222910.
  • Liu WF, Ren XB. Large piezoelectric effect in Pb-free ceramics. Phy Rev Lett. 2009;103:257602.
  • He LQ, Ji YC, Ren S, et al. Large piezoelectric co-efficient with enhanced thermal stability in Nb5+ doped Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics. Ceram Int. 2020;46:3236–3241.
  • Tian YS, Cao LJ, Zhang YN, et al. Defect dipole-induced high piezoelectric response and low activation energy of amphoteric Yb3+ and Dy3+ co-doped 0.5BaTi0.8Zr0.2O3-0.5Ba0.7Ca0.3TiO3 lead-free ceramics. Ceram Int. 2020;46:10040–10047.
  • Li Q, Zhang Q, Cai W, et al. Enhanced ferroelectric and piezoelectric response of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics by Tm3+ amphoteric substitution. Mater Chem Phys. 2020;252:123242.
  • Wang XW, Zhang BH, Shi YC, et al. Enhanced energy storage properties in Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with glass additives. J Appl Phys. 2020;127:074103.
  • Yan X, Zhang M, Hou Y, et al. High energy conversion efficiency in Mn-modified Ba0.9Ca0.1Ti0.93Zr0.07O3 lead-free energy harvester. J Am Ceram Soc. 2018;101:2330–2338.
  • Madhar NA, Ilahi B, Vaish M. Pyroelectric energy harvesting using (Ba0.85Ca0.15)(Zr0.1Ti0.89Fe0.01)O3 ceramics. Integr Ferroelectr. 2015;167:176–183.
  • Ando D, Kakimoto K. Pyroelectric energy harvesting using low-Tc (1-x)(Ba0.7Ca0.3)TiO3-xBa(Zr0.2Ti0.8)O3 bulk ceramics. J Am Ceram Soc. 2018;101:5061–5070.
  • Sanlialp M, Shvartsman VV, Acosta M, et al. Strong electrocaloric effect in lead-free 0.65Ba(Zr0.2Ti0.8)O3-0.35(Ba0.7Ca0.3)TiO3 ceramics obtained by direct measurements. Appl Phys Lett. 2015;106:062901.
  • Nie X, Yan X, Guo S, et al. The influence of phase transition on electrocaloric effect in lead free (Ba0.9Ca0.1)(Ti1-xZrx)O3 ceramics. J Am Ceram Soc. 2017;100:5202–5210.
  • Asbani B, Gagou Y, Dellis JL, et al. Structural, dielectric and electrocaloric properties in lead-free Zr-doped Ba0.8Ca0.2TiO3 solid solution. Solid State Commun. 2016;237-238:49–54.
  • Yuan R, Xue D, Zhou Y, et al. Ferroelectric, elastic, piezoelectric and dielectric properties of Ba(Ti0.7Zr0.3)O3-x(Ba0.82Ca0.18)TiO3 Pb-free ceramics. J Appl Phys. 2017;122:044105.
  • Gao J, Zhang L, Xue D, et al. Symmetry determination on Pb-free piezoceramic 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 using convergent beam electron diffraction method. J Appl Phys. 2014;115:054108.
  • Damjanovic D. A morphotropic phase boundary system based on polarization rotation and polarization extension. Appl Phys Lett. 2010;97:062906.
  • Tian Y, Chao X, Wei L, et al. Phase transition behavior and electrical properties of lead-free (Ba1-xCax)(Zr0.1Ti0.9)O3 piezoelectric ceramics. J Appl Phys. 2013;113:184107.
  • Reddy SR, Prasad VVB, Bysakh S, et al. Ferroelectric and piezoelectric properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 films in 200 nm thickness range. J Am Ceram Soc. 2019;102:1227–1286.
  • Kumar AS, Chitralekha CS, Vivek S, et al. Mutiferroic and magnetoelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3-CoFe2O4 core-shell nanocomposite. J Magn Magn Mater. 2016;418:294–299.
  • Ramana EV, Zavasnik J, Graca MPF, et al. Magnetoelectric studies on CoFe2O4/0.5(BaTi0.8Zr0.2O3)-0.5(Ba0.7Ca0.3TiO3) lead-free bilayer thin films derived by the chemical solution deposition. J Appl Phys. 2016;120:074108.
  • Chu NY, Wang DY, Wang Y, et al. The structural and in-plane dielectric/ferroelectric properties of the epitaxial (Ba,Sr)(Zr,Ti)O3 thin films. J Appl Phys 2014;115:234102.
  • Negi NS, Kumar R, Sharma H, et al. Structural, multiferroic, dielectric and magnetoelectric properties of (1-x)Ba0.85Ca0.15Ti0.90Zr0.10O3-(x)CoFe2O4 lead-free composites. J Magn Magn Mater. 2018;456:292–299.
  • Sharma S, Sharma H, Kumar S, et al. Analysis of sintering temperature effects on structural, dielectric and piezoelectric properties of BaZr0.2Ti0.8O3 ceramics prepared by sol-gel method. J Mater Sci: Mater Electron. 2020;31:19168–19179.
  • Zhao C, Wang H, Xiong J, et al. Composition-driven phase boundary and electrical properties in (Ba0.94Ca0.06)(Ti1-xMx)O3 (M = Sn, Hf. Zr) lead-free ceramics. Dalton Trans. 2016;45:6466–6480.
  • Zhang Y, Sun HJ, Chen W. Li-modified Ba0.99Ca0.1Zr0.02Ti0.98O3 lead-free ceramics with high improved piezoelectricity. J Alloys Compd. 2017;694:745–751.
  • Yotthuan S, Suriwong T, Pinitsoontorn S, et al. Effect of Fe2O3 doping on phase formation, microstructure, electric and magnetic properties of (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 ceramics. Integr Ferroelectr. 2018;187:100–112.
  • Abdessalem MB, Aydi S, Aydi A, et al. Polymorphic phase transition and morphotropic phase boundary in Ba1-xCaxTi1-yZryO3 ceramics. Appl Phys A. 2017;123:583.
  • Sandi DK, Supriyanto A, Jamaluddin A, et al. The effect of sintering temperature on dielectric constant of barium titanate (BaTiO3). IOP Conf Ser: Mater Sci Eng. 2016;107:012069.
  • Jonghe CLD, Rahaman MN. Handbook of advanced ceramics, edited by Somiya S, et al.; Academic Press; 2003, p. 187–264.
  • Wu J, Xiao D, Wu W, et al. Effect of dwell time during sintering on piezoelectric properties of (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free ceramics. J Alloys Compd. 2011;509:L359–L361.
  • Bijalwan V, Hughes H, Pooladvand H, et al. The effect of sintering temperature on the microstructure and functional properties of BCZT-xCeO2 lead free ceramics. Mater Res Bull. 2019;114:121–129.
  • Maxwell JC. Electricity and magnetism. Oxford: Oxford University Press; 1929, p. 328.
  • Wagner KW. The distribution of relaxation times in typical dielectrics. Am Phys. 1973;40:817–819.
  • Koops CG. On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys Rev. 1951;83:121–124.
  • Li W, Xu Z, Chu R, et al. Large piezoelectric co-efficient in (Ba1-xCax)(Ti0.96Sn0.04)O3 lead-free ceramics. J Am Ceram Soc. 2011;94:4131–4133.
  • Uchino K, Nomura S. Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics. 1982;44:55–61.
  • Yu T, Liu H, Hao H, et al. Grain size dependence of relaxor behavior in CaCu3Ti4O12 ceramics. Appl Phys Lett. 2007;91:222911.
  • Tian Y, Chao X, Jin L, et al. Polymorphic structure evolution and large piezoelectric response of lead-free (Ba, Ca)(Zr, Ti)O3 ceramics. Appl Phys Lett 2014;104:112901.
  • Muhsen KNDK, Osman RAM, Idris MS, et al. Effect of sintering temperature on (Ba0.85Ca0.15)(SnxZr0.1-xTi0.9)O3 for piezoelectric energy harvesting applications. Ceram Int. 2021;47:13107–13117.
  • Tan Q, Viehland D. Grain size dependence of relaxor characteristics in La-modified lead zirconate titanate. Ferroelectrics. 1997;193:157–165.
  • Hao JG, Bai WF, Li W, et al. Correlation between the microstructure and electrical properties in high-performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics. J Am Ceram Soc. 2012;95:1998–2006.
  • Wang K, Li JF. Domain engineering of lead-free Li-modified (K, Na)NbO3 polycrystals with highly enhanced piezoelectricity. Adv Funct Mater 2010;20(12):1924–1929.
  • Mayamae J, Vittayakorn W, Sukkha U, et al. High piezoelectric response in lead free 0.9BaTiO3-(0.1-x)CaTiO3-xBaSnO3 solid solution. Ceram Int. 2017;43:S121–S128.
  • Coondoo I, Panwar N, Amorin H, et al. Enhanced piezoelectric properties of praseodymium-modified lead-free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 ceramics. J Am Ceram Soc. 2015;98:3127–3135.
  • Parjansri P, Intatha U, Pengpat K, et al. Improvement in the electrical properties of BCZT ceramics induced by self-seeds. Appl Phys A. 2019;125:421.
  • Bharathi P, Verma KBR. Grain and the concomitant ferroelectric domain size dependent physical properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramic fabricated using powders derived from oxalate precursor route. J Appl Phys. 2014;116:164107.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.