Publication Cover
Phase Transitions
A Multinational Journal
Volume 95, 2022 - Issue 11
271
Views
3
CrossRef citations to date
0
Altmetric
Articles

Preparation and characterization of NiFe2O4 thin films for supercapacitor applications

, & ORCID Icon
Pages 786-802 | Received 18 May 2022, Accepted 05 Sep 2022, Published online: 20 Sep 2022

References

  • Yadav BK, Singh P, Yadav CP, et al. Synthesis and characterization of ZnSe1-xTex thin films. Phase Transitions. 2021;94(5):326–337.
  • Patil NM, Nilange SG, Jundale VA, et al. Structural, optical and electrical properties of spray-deposited Fe-doped nanocrystalline ZnS0.2Se0.8 thin films. Phase Transitions. 2021;94:6–8. 493-510.
  • Wang Q, Gao H, Qin X, et al. Fabrication of NiFe2O4@CoFe2O4 core-shell nanofibers for high performance supercapacitors. Mater Res Exp. 2020;7:015020.
  • Jeyabanu K, Devendran P, Manikandan A, et al. Preparation and characterization studies of La doped CuS nanospheres by microwave irradiation for high performance supercapacitors. Phys B: Cond Matter. 2019;573:92–101.
  • Khalid S, Cao C, Wang L, et al. A high performance solid state asymmetric supercapacitor device based upon NiCo2O4 nanosheets // MnO2 microspheres. RSC Adv. 2016;6:70292–70302.
  • Khalid S, Cao C, Ahmad A, et al. Microwave assisted synthesis of mesoporous NiCo2O4 nanosheets as electrode material for advanced flexible supercapacitors. RSC Adv. 2015;5:33146–33154.
  • Zhu Y, Cao C, Tao S, et al. Ultrathin nickel hydroxide and oxide nanosheets: synthesis, characterizations and excellent supercapacitor performances. Sci Rep. 2015;4:5787.
  • Khalid S, Cao C, Wang L, et al. Microwave assisted synthesis of porous NiCo2O4 microspheres: application as high performance asymmetric and symmetric supercapacitors with large areal capacitance. Sci Rep. 2016;6:22699.
  • Wu Y, Cao C. The way to improve the energy density of supercapacitors: progress and perspective. Sci China Mater. 2018;61:1517–1526.
  • Xu X, Cao C, Zhu Y. Facile synthesis of single crystalline mesoporous hematite nanorods with enhanced supercapacitive performance. Electrochim Acta. 2015;155:257–262.
  • Jundale VA, Yadav AA. Precursor solution concentration-dependent electrochemical properties of CoFe2O4 thin films. J Mater Sci Mater Electron. 2022;33:19612–19626.
  • Yadav AA, Chavan UJ. Electrochemical supercapacitive performance of spray deposited NiSnO3 thin films. Thin Solid Films. 2017;634:33–39.
  • Su DY, Liu ZG, Jiang L, et al. Conducting polymers in supercapacitor application. IOP Conf Series: Earth and Environ Sci. 2019;267:042048.
  • Kennaz H, Harat A, Guellati O, et al. Synthesis and electrochemical investigation of spinel cobalt ferrite magnetic nanoparticles for supercapacitor application. J Solid State Electrochem. 2018;22:835–847.
  • Bashir B, Rahman A, Muhammad HS, et al. Copper substituted nickel ferrite nanoparticles anchored onto the graphene sheets as electrode materials for supercapacitors fabrication. Ceram Inter. 2019;45:6759–6766.
  • Yari A, Fathabad SH. A high-performance supercapacitor based on cerium molybdate nanoparticles anchored on N, P co-doped reduced graphene oxide nanocomposite as the electrode. J Mater Sci: Mater Electron. 2020;31:1–12.
  • Sagu JS, Wijayantha KGU, Tahir AA. The pseudocapacitive nature of CoFe2O4 thin films. Electrochim Acta. 2017;246:870–878.
  • Yu M, Feng X. Thin-Film electrode-based supercapacitors. Joule. 2019;3:338–360.
  • Conway BE. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J Electrochem Soc. 1991;138:1539–1548.
  • Idrissi L, Tahiri N, El Bounagui O, et al. Theoretical investigation of physical properties of the spinel ZnFe2O4 compound: Ab-initio calculation. Ph Transit. 2021;94(3-4):134–146.
  • Maazouzi AEL, Masrour R, Jabar A. Thickness-dependent magnetic properties of inverse spinel Fe3O4. Ph Transit. 2020;93(7):733–740.
  • Yadav AA, Deshmukh TB, Deshmukh RV, et al. Electrochemical supercapacitive performance of hematite α-Fe2O3 thin films prepared by spray pyrolysis from non-aqueous medium. Thin Solid Films. 2016;616:351–358.
  • Kore RM, Lokhande BJ. A robust solvent deficient route synthesis of mesoporous Fe2O3 nanoparticles as supercapacitor electrode material with improved capacitive performance. J Alloy Compd. 2017;725:129–138.
  • Naeem F, Naeem S, Zhao Y, et al. Tio2 nanomembranes fabricated by atomic layer deposition for supercapacitor electrode with enhanced capacitance. Nano Res Lett. 2019;14:92.
  • Nikam SM, Sharma A, Rahaman M, et al. Pulsed laser deposited CoFe2O4 thin films as supercapacitor electrodes. RSC Adv. 2020;10:19353–19359.
  • Vadiyar MM, Bhise SC, Patil SK, et al. Mechanochemical growth of porous ZnFe2O4 nano-flakes thin film as electrode for supercapacitor application. RSC Adv. 2013;5:1–3.
  • Bandgar S, Vadiyar MM, Ling Y-C, et al. Metal precursor dependent synthesis of NiFe2O4 thin films for high performance flexible symmetric supercapacitor. ACS Appl Ener Mater. 2018;1(2):638–648.
  • Gunjakar JL, More AM, Gurav KV, et al. Chemical synthesis of spinel nickel ferrite (NiFe2O4) nano-sheets. Appl Surf Sci. 2008;254:5844–5848.
  • Saravanakumar B, Rani BJ, Ravi G, et al. Reducing agent (NaBH4) dependent structure, morphology and magnetic properties of nickel ferrite (NiFe2O4) nanorods. J Magn Mag Mater. 2017;428:78–85.
  • Dixit G, Singh JP, Srivastava RC, et al. Structural and magnetic behavior of NiFe2O4 thin film grown by pulsed laser deposition. Ind J Pure Appl Phy. 2010;48(4):287–291.
  • Montemayor SM, Garcia-Cerda LA, Torres-Lubian JR, et al. Comparative study of the synthesis of CoFe2O4 and NiFe2O4 in silica through the polymerized complex route of the sol-gel method. J Sol-Gel Sci Tech. 2007;42:181–186.
  • De M, Bera G, Tewari HS. Characterization of magnesium substituted nickel ferrites nano-particles synthesized using combustion technique. Int J Math Phys Sci Res. 2015;3:71–76.
  • Aparna ML, Grace AN, Sathyanarayanan P, et al. A comparative study on the supercapacitive behavior of solvothermally prepared metal ferrite (MFe2O4, M = Fe, Co, Ni, Mn, Cu, Zn) nanoassemblies. J Alloys Compd. 2018;745:385–395.
  • Naidu KC, Madhuri W. Hydrothermal synthesis of NiFe2O4 nano-particles: structural, morphological, optical, electrical and magnetic properties. Bull Mater Sci. 2017;40(2):417–425.
  • Albuquerque AS, Ardisson JD, Macedo WAA, et al. Structure and magnetic properties of nanostructured Ni-ferrite. J Magn Mag Mater. 2001;226-230:1379–1381.
  • Leng J, Wang Z, Wang J, et al. Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem Soc Rev. 2019;48:3015–3072.
  • Chavan AR, Birajdar SD, Chilwar RR, et al. Structural, morphological, optical, magnetic and electrical properties of Al3+ substituted nickel ferrite thin films. J Alloys Compd. 2018;735:2287–2297.
  • Karthigayan N, Manimuthu P, Priya M, et al. Synthesis and characterization of NiFe2O4, CoFe2O4 and CuFe2O4 thin films for anode material in Li-ion batteries, nanomater. Nanotech. 2017;7:1–5.
  • Yadav AA, Chavan UJ. Influence of substrate temperature on electrochemical supercapacitive performance of spray deposited nickel oxide thin films. J Electroanal Chem. 2016;782:36–42.
  • JCPDS data card (86-2267).
  • Yadav AA, Chavan UJ. Electrochemical supercapacitive performance of spray deposited Co3O4 thin film nanostructures. Electrochim Acta. 2017;232:370–376.
  • Henry J, Daniel T, Balasubramanian V, et al. Synthesis and characterisation of Cu2Se thin films doped with divalent cation (Cd2+) by the chemical bath deposition method. Phase Transitions. 2021;94:567–576.
  • Jamadade VS, Pusawale SN, Pathan HM, et al. Characterization of chemically grown nanostructured NiFe2O4. AIP Conf Proceed. 2012;1451:88–90.
  • Agouriane E, Essoumhi A, Razouk A, et al. X-ray diffraction and mossbauer studies of NiFe2O4 nanoparticles obtained by co-precipitation method. J Mater Environ Sci. 2016;7(12):4614–4619.
  • Kumar N, Kumar A, Chandrasekaran S, et al. Synthesis of mesoporous NiFe2O4 nanoparticles for enhanced supercapacitive performance. J Clean Ener Techn. 2018;6:51–55.
  • Moradmard H, Shayesteh SF. The variation of magnetic properties of nickel ferrite by annealing. Manuf Sci Techn. 2015;3:141–145.
  • Ingole RS, Lokhande BJ. Effect of pyrolysis temperature on structural, morphological and electrochemical properties of vanadium oxide thin films. J Anal Appl Pyrol. 2016;120:434–440.
  • Shetty C, Shastrimath VVD, Bairy R. Tuning the structural, morphological and optical properties of Sr-doped BFO thin films. Ph Transit. 2022;95(3):202–211.
  • Ganesh Kumar K, Balaji Bhargav P, Gnana Prakash D, et al. Investigations on SILAR coated CZTS thin films for solar cells applications. Phase Transitions. 2021;94(6-8):556–566.
  • Joshi GP, Saxena NS, Mangal R, et al. Band gap determination of Ni-Zn ferrites. Bull Mater Sci. 2003;26(4):387–389.
  • Yadav AA. Spray deposition of tin oxide thin films for supercapacitor applications: effect of solution molarity. J Mater Sci Mater Electron. 2016;27:6985–6991.
  • Tong S-K, Chi P-W, Kung S-H, et al. Tuning bandgap and surface wettability of NiFe2O4 driven phase transition. Sci Reports. 2018;8:1338.
  • Zhao DF, Yang H, Li RS, et al. Fabrication of nickel ferrite- graphene nanocomposites and their photocatalytic properties. Mater Res Inno. 2014;18:519–523.
  • Ravindra AV, Chandrika M, Rajesh C, et al. Simple synthesis structural and optical properties of cobalt ferrite nanoparticles. European Phy J Plus. 2019;134:296.
  • Bhujun B, Tan MTT, Shanmugam AS. Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications. Results Phys. 2017;7:345–353.
  • Jhan Y-R, Duh J-G. Electrochemical performance and low discharge cut-off voltage behavior of ruthenium doped Li4Ti5O12 with improved energy density. Electrochim Acta. 2012;63:9–15.
  • Sharif S, Yazdani A, Rahimi K. Incremental substitution of Ni with Mn in ­NiFe2O4 to largely enhance its supercapacitance properties. Sci Rep. 2020;10:10916.
  • Venkatachalam V, Jayavel R. Novel synthesis of Ni-ferrite (NiFe2O4) electrode material for supercapacitor applications. AIP Conf Proceed. 2015;1667:140016.
  • Kambale RC, Shaikh PA, Kamble SS, et al. Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite. J Alloys Compd. 2009;478:599–603.
  • Yadav AA. Physical and electrochemical properties of spray-deposited Co3O4thin films. Ph Transit. 2021;94(10):691–704.
  • Nilange SG, Patil NM, Yadav AA. Growth and characterization of spray deposited quaternary Cu2FeSnS4 semiconductor thin films. Phys B. 2019;560:103–110.
  • Gibin SR, Sivagurunathan P. Synthesis and characterization of nickel cobalt ferrite (Ni1-xCoxFe2O4) nano particles by co-precipitation method with citrate as chelating agent. J Mater Sci Mater Electron. 2017;28:1985–1996.
  • Gao X, Wang W, Bi J, et al. Morphology-controllable preparation of NiFe2O4 as high performance electrode material for supercapacitor. Electrochim Acta. 2019;296:181–189.
  • Senthikumar B, Selvan RK, Vinothbabu P, et al. Structural, magnetic, electrical and electrochemical properties of NiFe2O4 synthesized by the molten salt technique. Mater Chem Phy. 2011;130:285–292.
  • Bhojane P, Sharma A, Pusty M, et al. Synthesis of ammonia-assisted porous nickel ferrite (NiFe2O4) nanostructures as an electrode material for supercapacitors. J Nanosci Nanotech. 2017;17:1387–1392.
  • Jamadade VS, Fulari VJ, Lokhande CD. Supercapacitive behavior of electrosynthesized marygold-like structured nickel doped iron hydroxide thin film. J Alloys Compd. 2011;509:6257–6261.
  • Javed MS, Zhang C, Chen L, et al. Hierarchical mesoporous NiFe2O4 nanocone forest directly growing on carbon textile for high performance flexible supercapacitors. J Mater Chem A. 2016;4:8851–8859.
  • Yan J, Khoo U, Sumboja A, et al. Facile coating of manganese oxide nanowires with high-performance capacitive behavior. ACS Nano. 2010;4:4247–4255.
  • Ismail FM, Ramadan M, Abdellah AM, et al. Mesoporous spinel manganese zinc ferrite for high-performance supercapacitors. J Electroanal Chem. 2018;817:111–117.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.