Publication Cover
Phase Transitions
A Multinational Journal
Volume 95, 2022 - Issue 12
124
Views
1
CrossRef citations to date
0
Altmetric
Articles

Structural, dielectric, electrical, and optical properties of the Ca3CuTi4O12 ceramic

ORCID Icon, , &
Pages 865-887 | Received 27 May 2022, Accepted 30 Sep 2022, Published online: 31 Oct 2022

References

  • Chelidze TL, Gueguen Y. Electrical spectroscopy of porous rocks: a review – I. Theoretical models. Geophys J Int. 1999;137:1–15.
  • Friedman SP. A saturation degree-dependent composite spheres model for describing the effective dielectric constant of unsaturated porous media. Water Resour Res. 1998;34:2949–2961.
  • Yoo SY, Ha JY, Yoon SJ, et al. High-power properties of piezoelectric hard materials sintered at low temperature for multilayer ceramic actuators. J Eur Ceram Soc. 2013;33:1769–1778.
  • Dai B, Shao XP, Ren Y, et al. Electromagnetic performances of composites with promising carbons derived from bacterial cellulose. Mater Lett. 2012;82:188–190.
  • Yalcin O, Cosskun R, Okutan M, et al. Comparison effects and dielectric properties of different dose methylene-blue-doped hydrogels. J Phys Chem B. 2013;117:8931–8938.
  • Srivastava P, Singh K. Two-dimensional Bi2Te3 nanosheets with enhanced electrical and dielectric properties: scope of novel storage of renewable energy in nanoelectronics. Sci Adv Mater. 2013;5:836–843.
  • Panda TD. Growth, dielectric properties, and memory device applications of ZrO2 thin films. Thin Solid Films. 2013;531:1–20.
  • Javadi A, Xiao YL, Xu WJ, et al. Chemically modified graphene/P(VDF-TrFECFE) electroactive polymer nanocomposites with superior electromechanical performance. J Mater Chem. 2012;22:830–834.
  • Yang C, Song HS, Liu DB. Effect of coupling agents on the dielectric properties of CaCu3Ti4O12/PVDF composites. Composites: Part B. 2013;50:180–186.
  • Goyal RK, Katkade SS, Mule DM. Dielectric, mechanical and thermal properties of polymer/BaTiO3 composites for the embedded capacitor. Composites: Part B. 2013;44:128–132.
  • Wu CC, Yang CF. Investigating the mechanical properties of high dielectric constant polyetherimide/(Ba0.8Sr0.2)(Ti0.9Zr0.1)O3 composites. Composites: Part B. 2011;42:1799–1802.
  • Achary PGR, Nayak AA, Bhuyan RK, et al. Effect of cerium dopant on the structural and electrical properties of SrMnO3 single perovskite. J Mol Struct. 2021;1226:129391–9.
  • Chen K, Li GL, Gao F, et al. Conducting grain boundaries in the high-dielectric-constant ceramic CaCu3Ti4O12. J Appl Phys 2007;101:074101; Fu D, Taniguchi H, Taniyama T, et al. Origin of giant dielectric response in non-ferroelectric CaCu3Ti4O12: inhomogeneous conduction nature probed by atomic force microscopy. Chem. Mater. 2008;20:1694–071698.
  • Pansara PR, Raval PY, Vasoya NH, et al. Intriguing structural and magnetic properties correlation study on Fe3+ substituted calcium-copper-titanate. Phys Chem. Chem Phys. 2018;20:1914–1922.
  • Jing Liang HE, Chao LF, Jun HU, et al. Cu segregation and its effects on the electrical properties of calcium copper titanate. Sci China Tech Sci. 2011;54:2506–2251.
  • Zhang L, Song F, Lin X, et al. High-dielectric-permittivity silicone rubbers incorporated with polydopamine-modified ceramics and their potential application as dielectric elastomer generator. Mater Chem Phys. 2020;241:122373–122379.
  • Chung S-Y, Choi J-H, Choi J-K. Tunable current-voltage characteristics in polycrystalline calcium copper titanate. Appl Phys Lett. 2007;91:091912-5.
  • Ramírez MA, Parra R, Reboredo MM, et al. Elastic modulus and hardness of CaTiO3, CaCu3Ti4O12, and CaTiO3/CaCu3Ti4O12 mixture. Mater Lett. 2010;64:1226–1228.
  • Huang L, Li Y, Meng F, et al. Disorder-insensitivity of room-temperature giant permittivity in Ca4 − xCaCu3Ti4O12 (x = 3, 2 and 1) polycrystalline ceramics. J Appl Phys 2019;126:224102–9.
  • Yang Q, Li Y, et al. Permittivity order modulation by intrinsic dielectric coupling. A.I.P Adv. 2021;11:015354-015354-5.
  • Valim D, Souza Filho AG, Freire PTC, et al. Raman scattering and x-ray diffraction studies of polycrystalline CaCu3Ti4O12 under high-pressure. Phys Rev B. 2004;70:132103–7.
  • Kim HE, Yang S, Lee J-W, et al. Growth and characterization of CaCu3Ti4O12 single crystals. J Cryst Growth. 2014;408:60–63.
  • Bozin ES, Petkov V, Barnes PW, et al. Temperature-dependent total scattering structural study of CaCu3Ti4O12. J. Phys. Condens. Matter. 2004;16:S5091–S5102.
  • Zhu Y, Zheng JC, Wu L, et al. Nanoscale disorder in CaCu3Ti4O12: a new route to the enhanced dielectric response. Phys. Rev. Lett. 2007;99:037602-4.
  • Cullity BD. Elements of X-ray diffraction. Reading MA: Addison-Wesley; 1967.
  • Parida SK, Choudhary RNP, Ganga Raju Achary P. Structure and ferroelectric properties of lead nickel tungsten titanate: Pb(Ni1/3T1/3W1/3)O3 single perovskite. Ferroelectrics. 2019;551:109–121.
  • Parida SK. Structural behavior of Cu0.5Ag0.5 and Cu0.5Al0.5 alloys synthesized by Co-melting technique. Adv Sci Lett. 2016;22(2):584–587.
  • Sharma A, Negi P, Konwar RJ, et al. Tailoring of structural, optical and electrical properties of anatase TiO2 via doping of cobalt and nitrogen ions. J Mater Sci Technol. 2022;111:287–297.
  • Ben Jazia Kharrat A, Moutiab N, Khirouni K, et al. Investigation of electrical behavior and dielectric properties in polycrystalline Pr0.8Sr0.2MnO3 manganite perovskite. Mater Res Bull. 2018;105:75–83.
  • Huang X, Zhang H, Lai Y, et al. The lowered dielectric loss tangent and grain boundary effects in fluorine-doped calcium copper titanate ceramics. Appl Phys A. 2017;123:317–323.
  • Petzoldt J, Kamba S, Fabry J, et al. Infrared, Raman and high-frequency dielectric spectroscopy and the phase transitions in Na1/2Bi1/2TiO3. J. Phys. Condens. Matter. 2004;16:2719–2731.
  • Xue RZ, Chen ZP, Dai HY, et al. Effects of rare-earth ionic doping on microstructures and electrical properties of CaCu3Ti4O12 ceramics. Mater. Res. Bull. 2015;66:254–261.
  • Kumar A, Kumar R, Verma N, et al. Effect of the bandgap and the defect states present within bandgap on the non-linear optical absorption behavior of yttrium aluminum iron garnets. Opt Mater. 2020;108:110163–110172.
  • Selvamani R, Singh G, Sathe V, et al. Dielectric, structural and Raman studies on (Na0. 5Bi0. 5TiO3)(1− x)(BiCrO3)x ceramic. J. Phys. Condens. Matter. 2011;23:55901–7.
  • Mahour LN, Choudhary HK, Kumar R, et al. Structural, optical and Mössbauer spectroscopic investigations on the environment of Fe in Fe-doped ZnO (Zn1-xFexO) ceramics synthesized by solution combustion method. Ceram Int. 2019;45:24625–24634.
  • Kumar R, Kumar A, Verma N, et al. Mechanistic insights into the optical limiting performance of carbonaceous nanomaterials embedded with core-shell type graphite encapsulated Co nanoparticles. Phys Chem Chem Phys. 2020;22:27224–27240.
  • Ahmadipour M, Ayub SN, Ain MF, et al. Structural, surface morphology and optical properties of sputter-coated CaCu3Ti4O12 thin film: influence of RF magnetron sputtering power. Mater. Sci. Semicond. Process. 2017;66:157–161.
  • Mohanty NK, Satapathy SK, Behera B, et al. Complex impedance properties of LiSr2Nb5O15 ceramic. J. Adv. Ceramics. 2012;1:221–226.
  • Behera B, Nayak P, Choudhary RNP. Study of complex impedance spectroscopic properties of LiBa2Nb5O15 ceramics. Mater. Chem. Phys. 2007;106:193–197.
  • Parida SK, Choudhary RNP. Preparation method and cerium dopant effects on the properties of BaMnO3 single perovskite. Phase Transitions. 2020;93(10-11):981–991.
  • Selvasekarapandian S, Vijaykumar M. The ac impedance spectroscopy studies on LiDyO2. Mater. Chem. Phys. 2003;80:29–33.
  • Hossen MB, Hossain AKMA. Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4. J Adv Ceram. 2015;4:217–225.
  • Ke Q, Lou X, Wang Y, et al. Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3 ferroelectric thin film. Phys. Rev. B Condens. Matter Mater. Phys. 2010;82:024102–7.
  • Thakura S, Raia R, Bdikinb I, et al. Impedance and modulus spectroscopy characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3 ceramics. Mater. Res. 2016;19:1–8.
  • Khlifi A, Hanen R, Mleiki A, et al. Investigations of electrical properties of Pr0.65Ca0.25Cd0.1MnO3 ceramic. Eur. Phys. J. Plus. 2020;135:790–794.
  • Kabir R, Zhang T, Wang D, et al. Improvement in the thermoelectric properties of CaMnO3 perovskites by W doping. J Mater Sci. 2014;49:7522–7528.
  • Ganga Raju Achary P, Choudhary RNP, Parida SK. Investigation of structural and dielectric properties in polycrystalline PbMg1/3 Ti1/3W1/3O3 tungsten perovskite. SPIN. 2020;10(3):2050021–10.
  • Raffaele R, Anderson HU, Sparlin DM, et al. Transport anomalies in the high-temperature hopping conductivity and thermopower of Sr-doped La(Cr, Mn)O3. Phys. Rev. B Condens. Matter. 1991;43:7991–7999.
  • Sanad MMS, Rashad MM. Tuning the structural, optical, photoluminescence and dielectric properties of Eu2+-activated mixed strontium aluminate phosphors with different rare-earth co-activators. J Mater Sci: Mater Electron. 2016;27:9034–9043.
  • Koops CG. On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 1951;83:121–124.
  • Gao R, Xiaofeng Qin Q, ZhiyiXu ZW, et al. Enhancement of magnetoelectric properties of (1-x)Mn0.5Zn0.5Fe2O4-xBa0.85Sr0.15Ti0.9Hf0.1O3 composite ceramics. J Alloys Compd. 2019;795:501–512.
  • Sahoo S. Enhanced time response and temperature sensing behavior of thermistor using Zn-doped CaTiO3 nanoparticles. J. Adv. Ceram. 2018;7:99–108.
  • Yang K, Huang X, Huang Y, et al. Fluoro-Polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Chem. Mater. 2013;25:2327–2338.
  • Jadhav RN, Mathad SN, Puri V. Studies on the properties of Ni0.6Cu0.4Mn2O4 NTC ceramic due to Fe doping. Ceram. Int. 2012;38:5181–5188.
  • Sahoo S, Parashar SKS, Ali SM. Catio3 nano ceramic for NTCR thermistor-based sensor application. J. Adv. Ceram. 2014;3:117–124.
  • Nenova ZP, Nenov TG. Linearization circuit of the thermistor connection. IEEE Trans. Instrum. Meas. 2009;58:441–449.
  • Cao W, Gerhardt R. Calculation of various relaxation times and conductivity for a single dielectric relaxation process. Solid State Ionics. 1990;42:213–221.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.