Publication Cover
Phase Transitions
A Multinational Journal
Volume 97, 2024 - Issue 1-2
72
Views
0
CrossRef citations to date
0
Altmetric
Articles

Investigation on the structural characteristics and polymorphic transformation mechanism of polymorphic hydrates: a case of minodronic acid monohydrate

, , , , , & show all
Pages 87-105 | Received 16 May 2023, Accepted 21 Nov 2023, Published online: 09 Dec 2023

References

  • Reyes Figueroa F, Hernández Espinell JR, Hernández MH, et al. Polymorphic phase transformations in crystalline solid dispersions: the combined effect of pressure and temperature. Cryst Growth Des. 2022;22:2903–2909. doi:10.1021/acs.cgd.1c01289
  • Llinàs A, Burley JC, Prior TJ, et al. Concomitant hydrate polymorphism in the precipitation of sparfloxacin from aqueous solution. Cryst Growth Des. 2008;8:114–118. doi:10.1021/cg700908m
  • Alieva A, Boyes M, Vetter T, et al. Selective polymorphism of α-glycine by acoustic levitation. CrystEngComm. 2020;22:7075–7081. doi:10.1039/D0CE00856G
  • Sanii R, Patyk-Kaźmierczak E, Hua C, et al. Toward an understanding of the propensity for crystalline hydrate formation by molecular compounds. Part 2. Cryst Growth Des. 2021;21:4927–4939. doi:10.1021/acs.cgd.1c00353
  • Klitou P, Rosbottom I, Simone E. Synthonic modeling of quercetin and its hydrates: explaining crystallization behavior in terms of molecular conformation and crystal packing. Cryst Growth Des. 2019;19:4774–4783. doi:10.1021/acs.cgd.9b00650
  • Zhang F, Wang L, Fang W, et al. Understanding the role of solvent polarity in the molecular self-assembly process of etoricoxib solvates. Cryst Growth Des. 2020;20:3650–3662. doi:10.1021/acs.cgd.9b01399
  • Zhang X, Zhou L, Wang C, et al. Insight into the role of hydrogen bonding in the molecular self-assembly process of sulfamethazine solvates. Cryst Growth Des. 2017;17:6151–6157. doi:10.1021/acs.cgd.7b00717
  • Censi R, Di Martino P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules. 2015;20:18759–18776. doi:10.3390/molecules201018759
  • Najib MNM, Back K, Edkins K. The complex solid-state landscape of sodium diatrizoate hydrates. Chem Eur J. 2017;23:17339–17347. doi:10.1002/chem.201703658
  • Tieger E, Kiss V, Pokol G, et al. Studies on the crystal structure and arrangement of water in sitagliptin l-tartrate hydrates. CrystEngComm. 2016;18:3819–3831. doi:10.1039/C6CE00322B
  • Kodama K, Yi M, Shitara H, et al. Chirality switching in the enantioseparation of 2-hydroxy-4-phenylbutyric acid: role of solvents in selective crystallization of the diastereomeric salt. Tetrahedron Lett. 2020;61:151773. doi:10.1016/j.tetlet.2020.151773
  • Sorbera LA, Castaner J, Leeson J. Minodronic acid. Drugs Future. 2002;27:0935. doi:10.1358/dof.2002.027.10.701186
  • Tanishima S, Morio Y. A review of minodronic acid hydrate for the treatment of osteoporosis. Clin Interv Aging. 2013;8:185–189. doi:10.2147/CIA.S23927
  • Nakamura K, Tanaka T, Saito K, et al. Stabilization of minodronic acid in aqueous solution for parenteral formulation. Int J Pharm. 2001;222:91–99. doi:10.1016/S0378-5173(01)00704-9
  • Wang Y, Zhang B, Zheng Y, et al. Practical and scalable preparation of minodronic acid and zolpidem from 2-chloroimidazole[1 2-a]pyridines. Tetrahedron. 2019;75(8):1064–1071. doi:10.1016/j.tet.2019.01.015
  • Tanaka M, Mori H, Shimizu K, et al. Pharmacological profile and clinical efficacy of minodronic acid hydrate as a new therapeutic agent for osteoporosis. Nihon Yakurigaku Zasshi. 2009;134:149–157. doi:10.1254/fpj.134.149
  • Be̅rziņš A, Kons A, Saršu̅ns K, et al. On the rationalization of formation of solvates: experimental and computational study of solid forms of several nitrobenzoic acid derivatives. Cryst Growth Des. 2020;20:5767–5784. doi:10.1021/acs.cgd.0c00331
  • Joutsuka T. Molecular mechanism of autodissociation in liquid water: ab initio molecular dynamics simulations. J Phys Chem. 2022;126:4565–4571. doi:10.1021/acs.jpcb.2c01971
  • Qu B, Liu T, Duan L, et al. The effect of sodium citrate on NaOH-activated BFS cement: hydration mechanical property and micro/nanostructure. Cem Concr Compos. 2022;133:104703. doi:10.1016/j.cemconcomp.2022.104703
  • Kons A, Be̅rziņsˇ A, Actiņsˇ A, et al. Polymorphism of R-encenicline hydrochloride: access to the highest number of structurally characterized polymorphs using desolvation of various solvates. Cryst Growth Des. 2019;19:4765–4773. doi:10.1021/acs.cgd.9b00648
  • Badawi HM, Förner W, Ali SA. The molecular structure and vibrational 1H and 13C NMR spectra of lidocaine hydrochloride monohydrate. Spectrochim Acta A Mol Biomol Spectrosc. 2016;152:92–100.
  • Canales M, Guàrdia E. An comparative molecular dynamics study of sulfuric and methanesulfonic acids. J Mol Liq. 2016;224:1064–1073. doi:10.1016/j.molliq.2016.10.097
  • Carignani E, Borsacchi S, Bradley JP, et al. Strong intermolecular ring current influence on 1H chemical shifts in two crystalline forms of naproxen: a combined solid-state NMR and DFT study. J Phys Chem C. 2013;117:17731–17740.
  • Sweatman MB, Afify ND, Ferreiro-Rangel CA, et al. Molecular dynamics investigation of clustering in aqueous glycine solutions. J Phys Chem B. 2022;126:4711–4722.
  • Poornachary SK, Chia VD, Yani Y, et al. Anisotropic crystal growth inhibition by polymeric additives: impact on modulation of naproxen crystal shape and size. Cryst Growth Des. 2017;17:4844–4854. doi:10.1021/acs.cgd.7b00802
  • Karataş D, Tekin A, Bahadori F, et al. Interaction of curcumin in a drug delivery system including a composite with poly (lactic-co-glycolic acid) and montmorillonite: a density functional theory and molecular dynamics study. J Mater Chem B. 2017;5:8070–8082. doi:10.1039/C7TB01964E
  • Lyu Y, Xiang N, Mondal J, et al. Characterization of interactions between curcumin and different types of lipid bilayers by molecular dynamics simulation. J Phys Chem B. 2018;122:2341–2354.
  • Yuan Y, Deng J, Cui Q. Molecular dynamics simulations establish the molecular basis for the broad allostery hotspot distributions in the tetracycline repressor. J Am Chem Soc. 2022;144:10870–10887. doi:10.1021/jacs.2c03275
  • Zou L, Zhang W. Molecular dynamics simulations of the effects of entanglement on polymer crystal nucleation. Macromolecules. 2022;55:4899–4906. doi:10.1021/acs.macromol.2c00817
  • Khezri A, Karimi A, Yazdian F, et al. Molecular dynamic of curcumin/chitosan interaction using a computational molecular approach: emphasis on biofilm reduction. Int J Biol Macromol. 2018;114:972–978. doi:10.1016/j.ijbiomac.2018.03.100
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868. doi:10.1103/PhysRevLett.77.3865
  • Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem. 2006;27:1787–1799. doi:10.1002/jcc.20495
  • Neese F, Wennmohs F, Becker U, et al. The ORCA quantum chemistry program package. J Chem Phys. 2020;152:224108.doi:10.1063/5.0004608
  • Wu D, Li J, Xiao Y, et al. New salts and cocrystals of pymetrozine with improvements on solubility and humidity stability: experimental and theoretical study. Cryst Growth Des. 2021;21:2371–2388. doi:10.1021/acs.cgd.1c00009
  • Mardirossian N, Head-Gordon M. ωB97M-V: a combinatorial optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J Chem Phys. 2016;144:214110. doi:10.1063/1.4952647
  • Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem. 2012;33:580–592. doi:10.1002/jcc.22885
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graphics. 1996;14:33–38. doi:10.1016/0263-7855(96)00018-5
  • Spackman PR, Turner MJ, McKinnon JJ, et al. CrystalExplorer: a program for Hirshfeld surface analysis visualization and quantitative analysis of molecular crystals. J Appl Cryst. 2021;54:1006–1011. doi:10.1107/S1600576721002910
  • Yan H, Nie B, Peng C, et al. Molecular model construction of low-quality coal and molecular simulation of chemical bond energy combined with materials studio. Energy Fuels. 2021;35:17602–17616. doi:10.1021/acs.energyfuels.1c02658
  • Deng L, Zhou N, Tang S, et al. Improved dreiding force field for a single layer black phosphorus. Phys Chem Chem Phys. 2019;21(30):16804–16817. doi:10.1039/C9CP02790D
  • Airoldi A, Bettoni P, Donnola M, et al. Crystal structure of zwitterionic 3-(2-hydroxy-2-phosphonato-2-phosphonoethyl) imidazo [1 2-a] pyridin-1-ium monohydrate (minodronic acid monohydrate): a redetermination. Acta Crystallogr E Crystallogr Commun. 2015;71(1):51–54.
  • Murray S, Politzer P. The electrostatic potential: an overview. WIREs Comput Mol Sci. 2011;1:153–163. doi:10.1002/wcms.19
  • Sangeetha M, Mathammal R. Structure-activity relationship of the ionic cocrystal: 5-amino-2-naphthalene sulfonate center dot ammonium ions for pharmaceutical applications. J Mol Struct. 2018;1154:327–337. doi:10.1016/j.molstruc.2017.10.060
  • Emamian S, Lu T, Kruse H, et al. Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory. J Comput Chem. 2019;40:2868–2881. doi:10.1002/jcc.26068
  • Rozas I, Alkorta I, Elguero J. Behavior of ylides containing N, O, and C atoms as hydrogen bond accepters. J Am Chem Soc. 2000;122:11154–11161. doi:10.1021/ja0017864
  • Emamian S, Lu T, Kruse H, et al. Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors binding energies and energy components of symmetry-adapted perturbation theory. J Comput Chem. 2019;40:2868–2881. doi:10.1002/jcc.26068
  • Babu NJ, Cherukuvada S, Thakuria R, et al. Conformational and synthon polymorphism in furosemide (Lasix). Cryst Growth Des. 2010;10:1979–1989. doi:10.1021/cg100098z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.