29
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Phase transition, structural and magnetic parameters of vanadium-substituted Bi0.9Sm0.1FeO3 multiferroic ceramics

Received 27 Nov 2023, Accepted 20 May 2024, Published online: 03 Jun 2024

References

  • Wadgane SR, Alone ST, Karim A, et al. Magnetic field induced polarization and magnetoelectric effect in Na0.5Bi0.5TiO3-Co0.75Zn0.25Cr0.2Fe1.8O4 multiferroic composite. J Magn Magn Mater. 2019;471:388–393. doi:10.1016/j.jmmm.2018.10.011
  • Shirsath SE, Hussein M, Assadi N, et al. Interface-driven multiferroicity in cubic BaTiO3-SrTiO3 nanocomposites. ACS Nano. 2022;16:15413–15424. doi:10.1021/acsnano.2c07215
  • Kubel F, Schmid H. Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallog B. 1990;46:698–702. doi:10.1107/S0108768190006887
  • Wang N, Luo X, Han L, et al. Structure, performance, and application of BiFeO3 nanomaterials. Nano Micro Lett. 2020;12:81. doi:10.1007/s40820-020-00420-6
  • Papadopoulos K, Myrovali E, Dubey A, et al. Control of physical properties in BiFeO3 nanoparticles via Sm3+ and Co2+ ion doping. Nanotechnol. 2024;35:015707. doi:10.1088/1361-6528/acfcc2
  • Ali SE. Influence of preparation method on phase formation, structural, and magnetic properties of BiFeO3. J Electroceram. 2022;48:95–101. doi:10.1007/s10832-021-00276-1
  • Mathankumar K, Sukumar M, Dash CS, et al. Facile synthesis, characterization, catalytic, and photocatalytic activity of multiferroic BiFeO3 perovskite nanoparticles. J Inorg Organomet Polym Mater. 2022;32:3476–3487. doi:10.1007/s10904-022-02382-1
  • Sahni M, Kumar D, Chauhan S, et al. Study of structural, optical, and photocatalytic activity of Sm and Ni doped BiFeO3 (BFO) and BFO@ZnO nanostructure. Mater Today Proc. 2020;28:56–60. doi:10.1016/j.matpr.2020.01.214
  • Sahni M, Mukaherjee S, Hamid A, et al. Structural, optical, magnetic, dielectric, and photocatalytic properties od Sm- and Ni- substituted BiFeO3 nanoparticles. J Mater Sci Mater Electron. 2020;31:7798–7810. doi:10.1007/s10854-020-03318-6
  • Wang CA, Pang HZ, Zhang AH, et al. Room temperature multiferroic and magnetodielectric properties in Sm and Sc co-doped BiFeO3 ceramics. J Phys D Appl Phys. 2015;48:395302. doi:10.1088/0022-3727/48/39/395302
  • Wang N, Li Y, Wang FL, et al. Structure, magnetic, and ferroelectric properties of Sm and Sc doped BiFeO3 polycrystalline ceramics. J Alloys Compd. 2019;789:894–903. doi:10.1016/j.jallcom.2019.03.132
  • Kebede MT, Devi S, Dillu V, et al. Effects of Sm and Cr co-doping on structural, magnetic, optical, and photocatalytic properties of BiFeO3 nanoparticles. Mater Sci Eng B. 2022;283:115859. doi:10.1016/j.mseb.2022.115859
  • Kebede MT, Devi S, Dillu V, et al. Rhombohedral distortion induced structural, magnetic, optical phase transitions and photocatalytic activity in Sm and Sm-Cr co-substituted bismuth ferrite nanoparticles. J Cryst Growth. 2023;620:127336. doi:10.1016/j.jcrysgro.2023.127336
  • Gu Y, Zhao J, Zhang W, et al. Structural transformation and multiferroic properties of Sm and Ti co-doped BiFeO3 ceramics with Fe vacancies. Ceram Int. 2017;43:14666–14671. doi:10.1016/j.ceramint.2017.07.187
  • Wang T, Song SH, Ma Q, et al. Highly improved multiferroic properties of Sm and Nb co-doped BFeO3 ceramics prepared by spark plasma sintering combined with sol-gel powders. J Alloys Compd. 2019;795:60–68. doi:10.1016/j.jallcom.2019.04.327
  • Rhaman MM, Matin MA, Hossain MN, et al. Bandgap tuning of Sm and Co co-doped BFO nanoparticles for photovoltaic application. J Electron Mater. 2018;47:6954–6958. doi:10.1007/s11664-018-6597-7
  • Arya G, Yogiraj I, Negi NS, et al. Observation of enhanced multiferroic, magnetoelectric, and photocatalytic properties in Sm-Co codoped BiFeO3 nanoparticles. J Alloys Compd. 2017;723:983–994. doi:10.1016/j.jallcom.2017.06.325
  • Anthoniappen J, Chang WS, Soh AK, et al. Electric field induced nanoscale polarization switching and piezorinesponse in Sm and Mn co-doped BiFeO3 mutiferroic ceramics by using piezoresponse force microscopy. Acta Mater. 2017;132:174–181. doi:10.1016/j.actamat.2017.04.034
  • Zhou W, Deng H, Cao H, et al. Effects of Sm and Mn co-doping on structural, optical, magnetic properties of BiFeO3 films prepared by a sol-gel technique. Mater Lett. 2015;144:93–96. doi:10.1016/j.matlet.2015.01.038
  • Zhou SD, Wang YG, Li Y, et al. Structural, magnetic, and ferroelectric properties of Sm and Mn co-substituted BiFeO3 ceramics with composition near the morphotropic phase boundary. Ceram Int. 2018;44:13090–13096. doi:10.1016/j.ceramint.2018.04.129
  • Agarwal R, Sharma Y, Hong S, et al. Modulation of oxygen vacancies assisted ferroelectric and photovoltaic properties of (Nd, V) co-doped BiFeO3 thin films. J Phys D Appl Phys. 2018;51:275303. doi:10.1088/1361-6463/aac505
  • Kim YJ, Kim JW, Raghavan CM, et al. Enhancement of electrical properties of (Gd, V) co-doped BiFeO3 thin films prepared by chemical solution deposition. Ceram Int. 2013;39:S195–S199. doi:10.1016/j.ceramint.2012.10.061
  • Wang W, Yang C, Yu S, et al. Defect engineering on BiFeO3 through Na and V codoping for aqueous Na-ion capacitors. J Energy Chem. 2024;90:453–463. doi:10.1016/j.jechem.2023.11.002
  • Pan Q, Yang C, Qi W, et al. Electrochemically constructing V-doped BiFeO3 nanoflake network anodes for flexible asymmetric micro-supercapacitors. Electrochim Acta. 2021;393:139079. doi:10.1016/j.electacta.2021.139079
  • Dahiya R, Agarwal A, Sanghi S, et al. Structural, magnetic, and dielectric properties of Sr and V doped BiFeO3 multiferroics. J Magn Magn Mater. 2015;385:175–181. doi:10.1016/j.jmmm.2015.03.013
  • Al-Haj M. Structural and magnetic characterization of Bi0.9Ca0.1Fe0.98X0.02O3 (X = Mg, Al, Ti, V) polycrystalline multiferroic compounds. Turk J Phys. 2012;36:415–421.
  • Walker J, Mirjanic A, Prah U, et al. Magnetic contributions in multiferroic gadolinium modified bismuth ferrite ceramics. Scrip Mater. 2020;188:233–237. doi:10.1016/j.scriptamat.2020.07.045
  • Holland T, Redfern S. Unitcell refinement from powder diffraction data: the use of regression diagnostics. Miner Mag. 1997;61:65–77. doi:10.1180/minmag.1997.061.404.07
  • Al-Haj M. Enhanced magnetization in Y substituted Bi0.94Sm0.06FeO3 multiferroic ceramics. Kuwait J Sci. 2020;47:34–40.
  • Al-Haj M. Structural, spectroscopic, and magnetic characterization of Bi0.9X0.1Fe0.98Mg0.02O3 (X = Gd, Sm, Ba) multiferroic compounds. Jordan J Phys. 2019;12:133–140.
  • Maleki H, Zakeri M, Fathi R. Experimental study of the effect of yttrium on the structural, thermal, and magnetic properties of BiFeO3. Appl Phys A. 2018;124:728. doi:10.1007/s00339-018-2154-8
  • Dabas S, Kumar M, Chaudhary P, et al. Structural, energy storage analysis, and enhanced magnetoelectric coupling in Mn modified multiferroic BiFeO3. J Electron Mater. 2019;48:5785–5796. doi:10.1007/s11664-019-07370-9
  • Lakshmi SD, Banu IB. Multiferroism and magnetoelectric coupling in single-phase Yb and X (X = Nb, Mn, Mo) co-doped BiFeO3 ceramics. J Sol Gel Sci Technol. 2019;89:713–721. doi:10.1007/s10971-018-4901-x
  • Almessiere MA, Slimani Y, Gungunes H, et al. Bi3+ and V3+ co-substituted Ni-Co spinel ferrites: Synthesis, optical, magnetic characterization, and hyperfine interaction. Mater Sci Eng B. 2022;284:115905. doi:10.1016/j.mseb.2022.115905

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.