21
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thickness-dependent morphological, structural, and optical properties of cobalt ferrite films

, &
Received 13 Nov 2023, Accepted 09 May 2024, Published online: 10 Jun 2024

References

  • Rodewald J, Thien J, Pohlmann T, et al. Formation of ultrathin cobalt ferrite films by interdiffusion of Fe3O4/CoO bilayers. Phys Rev B. 2019;100:155418-1. doi:10.1103/PhysRevB.100.155418.
  • Hoffmann A, Bader SD. Opportunities at the frontiers of spintronics. Phys Rev Appl. 2015;4:047001. doi:10.1103/PhysRevApplied.4.047001.
  • Moussy JB. From epitaxial growth of ferrite thin films to spin-polarized tunnelling. J Phys D: Appl Phys. 2013;46:143001. doi:10.1088/0022-3727/46/14/143001.
  • Lüders U, Barthélémy A, Bibes M, et al. NiFe2O4: a versatile spinel material brings new opportunities for spintronics. Adv Mat. 2006;18:1733–1736. doi:10.1002/adma.200500972.
  • Matzen S, Moussy J-B, Wei P, et al. Structure magnetic ordering, and spin filtering efficiency of NiFe2O4 (III) ultrathin films. Appl Phys Lett. 2014;104:182404-1. doi:10.1063/1.4871733.
  • Ramos AV, Guittet MJ, Moussy JB, et al. Room temperature spin filtering in epitaxial cobalt-ferrite tunnel barriers. Appl Phys Lett. 2007;91:122107. doi:10.1063/1.2787880.
  • Jin C, Li P, Mi W, et al. Structure, magnetic, and transport properties of epitaxial ZnFe2O4 films: An experimental and first-principles study. J Appl Phys. 2014;115:213908. doi:10.1063/1.4881502.
  • Rani R, Batoo KM, Sharma P, et al. Structural, morphological and temperature dependent electrical traits of Co0.9Zn0.1InxFe2-xO4 spinel nano-ferrites. Ceram Int. 2021;47:30902–30910. doi:10.1016/j.ceramint.2021.07.273.
  • Thakur P, Gupta K, Thakur P, et al. Improvement in the structural, dielectric, and magnetic properties of CFO-doped KNNS-BKT ceramics. J Mater Sci: Mater Electron. 2023;34:311. doi:10.1007/s10854-022-09782-6.
  • Jasrotia R, Prakash J, Himanshi, et al. Advancements in doping strategies for enhancing applications of M-type hexaferrites: A comprehensive review. Prog Solid State Chem. 2023;72:100427. doi:10.1016/j.progsolidstchem.2023.100427.
  • Rafiq MA, Khan MA, Asghar M, et al. Influence of Co2+ on structural and electromagnetic properties of Mg–Zn nanocrystals synthesized via co-precipitation route. Ceram Int. 2015;41:10501–10505. doi:10.1016/j.ceramint.2015.04.141.
  • Lohara KS, Pachpinde AM, Langade MM, et al. Self-propagating high temperature synthesis, structural morphology and magnetic interactions in rare earth Ho3+ doped CoFe2O4 nanoparticles. J Alloys Compd. 2014;604:204–210. doi:10.1016/j.jallcom.2014.03.141.
  • Patange SM, Desai SS, Meena SS, et al. Random site occupancy induced disordered Néel-type collinear spin alignment in heterovalent Zn2+-Ti4+ ions substituted CoFe2O4. RSC adv. 2015;5:91482–91492. doi:10.1039/C5RA21522F.
  • Shirsath SE, Liu X, Yasukawa Y, et al. Switching of magnetic easy axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin films. Sci Rep. 2016;6:30074. doi:10.1038/srep30074.
  • Druc AC, Borhan AI, Diaconu A, et al. How cobalt ions substitution changes the structure and dielectric properties of magnesium ferrite? Ceram Int. 2014;40:13573–13578. doi:10.1016/j.ceramint.2014.05.071.
  • Singha K, Jasrotia R, Himanshi, et al. A review of Z-type hexaferrite based magnetic nanomaterials: structure, synthesis, properties, and potential applications. Prog Solid State Chem. 2023;70:100404. doi:10.1016/j.progsolidstchem.2023.100404.
  • Mane DR, Birajdar DD, Patil S, et al. Redistribution of cations and enhancement in magnetic properties of sol–gel synthesized Cu0.7-xCoxZn0.3Fe2O4 (0 ≤ x ≤ 0.5). J Sol-Gel Sci Technol. 2011;58:70–79. doi:10.1007/s10971-010-2357-8.
  • Dong C, Wang G, Guo D, et al. Growth, structure, morphology, and magnetic properties of Ni ferrite films. Nanoscale Res Lett. 2013;8:196. doi:10.1186/1556-276X-8-196.
  • Bursian VE, Kaveev AK, Korovin AM, et al. Bulk-like dynamic magnetic properties of nickel ferrite epitaxial thin films grown on SrTiO3(001) substrates. IEEE Mag Lett. 2019;10:1–5. doi:10.1109/LMAG.2019.2930597.
  • Li CH, Huang Z, Lin J, et al. Excellent-moisture-resistance fluorinated polyimide composite film and self-powered acoustic sensing. ACS Appl Mater Interfaces. 2023;15:35459–35468. doi:10.1021/acsami.3c05154.
  • Wu Y, Wu H, Zhao Y, et al. Metastable structures with composition fluctuation in cuprate superconducting films grown by transient liquid-phase assisted ultra-fast heteroepitaxy. Mater Today Nano. 2023;24:100429. doi:10.1016/j.mtnano.2023.100429.
  • Du S, Yin J, Xie H, et al. Auger scattering dynamic of photo-excited hot carriers in nano-graphite film. Appl Phys Lett. 2022;121:181104. doi:10.1063/5.0116720.
  • Kumari K, Kumar R, Barman PB. Magnetic field and temperature-dependent studies of structural and magnetic properties of NiFe2O4 films. Appl Phys A. 2020;126:456. doi:10.1007/s00339-020-03621-3.
  • Kumar P, Singh RK, Rawat N, et al. A novel method for controlled synthesis of nanosized hematite (α-Fe2O3) thin film on liquid–vapor interface. J Nanopart Res. 2013;15:1532. doi:10.1007/s11051-013-1532-6.
  • Kumar R, Kumar R. Evolution of a facile and novel general strategy for fabricating single and mixed 3d-block transition metal hydroxide/oxide films for innumerable applications. Mater Chem Phys. 2021;266:124534. doi:10.1016/j.matchemphys.2021.124534.
  • Kumar P, Khah SK, Katyal SC, et al. Synthesis of magnetic thin films on glass substrates using NH3 vapors. Mater Sci Forum. 2012;710:762–767. doi:10.4028/www.scientific.net/MSF.710.762.
  • Kumari K, Kumar R, Barman PB. Influence of applied magnetic field and heating on properties of cobalt ferrite films. J Mater Sci: Mater Electron. 2021;32:5594–5601. doi:10.1007/s10854-021-05281-2.
  • Kumar BR, Rao T. AFM studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films. Digest J Nanomater Biostruct. 2012;7:1881–1889.
  • Kumar S, Sharma V. Enhancing the surface morphology for improved phase change mechanism by Sm doping in Ge2Sb2Te5 thin films. Appl Phys A. 2021;127:213. doi:10.1007/s00339-021-04377-0.
  • Shirsath SE, Wang D, Zhang J, et al. Single-crystal-like textured growth of CoFe2O4 thin film on an amorphous substrate: a self-bilayer approach. ACS Appl Electron Mater. 2020;2:3650–3657. doi:10.1021/acsaelm.0c00716.
  • Gabal MA, Angari YM, Zaki HM. Structural, magnetic and electrical characterization of Mg–Ni nano-crystalline ferrites prepared through egg-white precursor. J Mag Magn Mater. 2014;363:6–12. doi:10.1016/j.jmmm.2014.03.007.
  • Kumar S, Singh RR, Barman PB. Reitveld refinement and derivative spectroscopy of nanoparticles of soft ferrites (MgNiFe). J Inorg Organom Polym. 2021;31:528–541. doi:10.1007/s10904-020-01764-7.
  • Kumari K, Kumar R, Barman PB. Tuning of structural, magnetic and optical properties of NiFe2O4 films by implementing high magnetic fields. Thin Solid Films. 2020;712:138321. doi:10.1016/j.tsf.2020.138321.
  • Nikam DS, Jadhav SV, Khot VM, et al. Cation distribution, structural, morphological and magnetic properties of Co1-xZnxFe2O4 (x=0-1) nanoparticles. RSC Adv. 2015;5:2338–2345. doi:10.1039/C4RA08342C.
  • Yadav RS, Kuřitka I, Vilcakova J, et al. Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe2O4 nanoparticles synthesized by honey mediated sol-gel combustion method. Adv Nat Sci: Nanosci Nanotechnol. 2017;8:045002. doi:10.1088/2043-6254/aa853a.
  • Strens RGJ, Burns RG. Mineralogical applications of crystal field theory. Mineral Mag. 1973;39:123–123. doi:10.1180/minmag.1973.039.301.22.
  • Sharma D, Khare N. Tailoring the optical bandgap and magnetization of cobalt ferrite thin films through controlled zinc doping. AIP Adv. 2016;6:085005. doi:10.1063/1.4960989.
  • Sharma D, Khare N. Tuning of optical bandgap and magnetization of CoFe2O4 thin films. Appl Phys Lett. 2014;105:032404. doi:10.1063/1.4890863.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.