89
Views
4
CrossRef citations to date
0
Altmetric
Articles

An innovative technique to suppress alkene-bond in green diesel by Mg–Fe basic soap thermal decarboxylation

, , ORCID Icon &
Pages 374-380 | Received 30 Jul 2017, Accepted 23 Oct 2017, Published online: 16 Nov 2017

References

  • Agterberg, F. P. W., W. L. Driessen, J. Reedijk, H. Oevering, and W. Buijs. 1994. “Copper-Catalyzed Oxidative Decarboxylation of Aliphatic Carboxylic Acids.” Studies in Surface Science and Catalysis 82: 639–646. doi: 10.1016/S0167-2991(08)63458-8
  • Arend, M., T. Nonnen, W. F. Hoelderich, J. Fischer, and J. Groos. 2011. “Catalytic Deoxygenation of Oleic Acid in Continuous Gas Flow for the Production of Diesel-Like Hydrocarbons.” Applied Catalysis A: General 399: 198–204. doi: 10.1016/j.apcata.2011.04.004
  • Bacha, J., J. Freed, A. Gibbs, and L. Gibbs. 2007. Diesel Fuels, 1–107. San Ramon: Chevron Corporation.
  • Banga, S., and P. K. Varshney. 2010. “Effect of Impurities on Performance of Biodiesel: A Review.” Journal of Scientific & Industrial Research 69: 575–579.
  • Castaneda, L. C., J. A. D. Muñoz, and J. Ancheyta. 2014. “Current Situation of Emerging Technologies for Upgrading of Heavy Oils.” Catalysis Today 220-222: 248–273. doi: 10.1016/j.cattod.2013.05.016
  • Chang, C-C., and S-W. Wan. 1947. “China’s Motor Fuels from Tung Oil.” Industrial and Engineering Chemistry 39: 1543–1548. doi: 10.1021/ie50456a011
  • Chen, S. 2012. “Green Oil Production by Hydroprocessing." International Journal of Clean Coal and Energy 1: 43–55. doi: 10.4236/ijcce.2012.14005
  • Chiapero, M., P. T. M. Do, S. Crossley, L. L. Lobban, and D. E. Resasco. 2011. “Direct Conversion of Triglycerides to Olefins and Paraffins over Noble Metal Supported Catalysts.” Fuel, 90: 1155–1165. doi: 10.1016/j.fuel.2010.10.025
  • Duong, L. H., O. Fujita, I. K. Reksowardojo, T. H. Soerawidjaja, and G. F. Neonufa. 2016. “Experimental Investigation of the Effects of Cycloparaffins and Aromatics on the Sooting Tendency and the Freezing Point of Soap-Derived Biokerosene and Normal Paraffins.” Fuel 185: 855–862. doi: 10.1016/j.fuel.2016.08.050
  • Erwin, J. 1992. “Assay of diesel fuel components properties and performance.” Symposium on processing and product selectivity of synthetic fuels, Division of Fuel Chemistry, American Chemical Society, Washington, USA, August 23–28, 1992, 1915–1923.
  • Fu, J., F. Shi, L. T. Thompson Jr., X. Lu, and P. E. Savage. 2011. “Activated Carbons for Hydrothermal Decarboxylation of Fatty Acids.” ACS Catalysis 1: 227–231. doi: 10.1021/cs1001306
  • Fu, J., X. Lu, and P. E. Savage. 2010. “Catalytic Hydrothermal Deoxygenation of Palmitic Acid.” Energy & Environmental Science 3: 311–317. doi: 10.1039/b923198f
  • Fu, J., X. Lu, and P. E. Savage. 2011. “Hydrothermal Decarboxylation and Hydrogenation of Fatty Acids over Pt/C.” ChemSusChem 4: 481–486. doi: 10.1002/cssc.201000370
  • Greensfelder, B. S., and H. H. Voge. 1945. “Catalytic Cracking of Pure Hydrocarbons.” Industrial and Engineering Chemistry 37 (6): 514–520. doi: 10.1021/ie50426a008
  • Hsu, H-L., J. O. Osburn, and C. S. Grove Jr. 1950. “Pyrolysis of the Calcium Salts of Fatty Acids.” Industrial and Engineering Chemistry 42: 2141–2145. doi: 10.1021/ie50490a037
  • Idesh, S., S. Kudo, K. Norinaga, and J. Hayashi. 2013. “Catalytic Hydrothermal Reforming of Jatropha Oil in Subcritical Water for the Production of Green Fuels: Characteristics of Reactions over Pt and Ni Catalysts.” Energy & Fuels 27 (8): 4796–4803. doi: 10.1021/ef4011065
  • Immer, J. G., M. J. Kelly, and H. H. Lamb. 2010. “Catalytic Reaction Pathways in Liquid-Phase Deoxygenation of C18 Free Fatty Acids.” Applied Catalysis A: General 375 (1): 134–139. doi: 10.1016/j.apcata.2009.12.028
  • Indarto, A., J.-W. Choi, H. Lee, and H. K. Song. 2007. “A Brief Catalyst Study on Direct Methane Conversion Using a Dielectric Barrier Discharge.” Journal of the Chinese Chemical Society 54: 823–828. doi: 10.1002/jccs.200700120
  • Indarto, A., J. W. Choi, H. Lee, and H. K. Song. 2008. “A Review of C1 Chemistry Synthesis Using Yttrium-Stabilized Zirconia Catalyst.” Journal of Rare Earths 26 (1): 1–6. doi: 10.1016/S1002-0721(08)60026-5
  • Kubiccova, I., M. Snare, K. Eranen, P. Maki-Arvela, and D. Y. Murzin. 2005. “Hydrocarbons for Diesel Fuel via Decarboxylation of Vegetable Oils.” Catalysis Today 106: 197–200. doi: 10.1016/j.cattod.2005.07.188
  • Kumar, P., S. R. Yenumala, S. K. Maity, and D. Shee. 2014. “Kinetics of Hydrodeoxygenation of Stearic Acid Using Supported Nickel Catalysts: Effects of Supports.” Applied Catalysis A: General 471: 28–38. doi: 10.1016/j.apcata.2013.11.021
  • Lappi, H., and R. Alén. 2011. “Pyrolysis of Vegetable Oil Soaps-Palm, Olive, Rapeseed and Castor Oils.” Journal of Analytical and Applied Pyrolysis 91: 154–158. doi: 10.1016/j.jaap.2011.02.003
  • Ma, F., and M. A. Hanna. 1999. “Biodiesel Production: A Review.” Bioresource Technology 70: 1–15. doi: 10.1016/S0960-8524(99)00025-5
  • Matter, P. H., and U. S. Ozkan. 2005. “Effect of Pretreatment Conditions on Cu/Zn/Zr-Based Catalysts for the Steam Reforming of Methanol to H2.” Journal of Catalysis 234: 463–475. doi: 10.1016/j.jcat.2005.07.007
  • Mo, N., and P. E. Savage. 2014. “Hydrothermal Catalytic Cracking of Fatty Acids with HZSM-5.” ACS Sustainable Chemistry & Engineering 2: 88–94. doi: 10.1021/sc400368n
  • Mu, J., and D. D. Perlmutter. 1981. “Thermal Decomposition of Carbonates, Carboxylates, Oxalates, Acetates, Formates and Hydroxides.” Thermochimica Acta 49: 207–218. doi: 10.1016/0040-6031(81)80175-X
  • Na, J.-G., B. E. Yi, J. N. Kim, K. B. Yi, S-Y. Park, J-H. Park, J-N. Kim, and C. H. Ko. 2010. “Hydrocarbon Production from Decarboxylation of Fatty Acid Without Hydrogen.” Catalysis Today 156: 44–48. doi: 10.1016/j.cattod.2009.11.008
  • Peterson, A. A., F. Vogel, R. P. Lachane, M. Froling, M. J. Antal, and J. W. Tester. 2008. “Thermochemical Biofuel Production in Hydrothermal Media: A Review of Sub- and Supercritical Water Technologies.” Energy & Environmental Science 1: 32–36. doi: 10.1039/b810100k
  • Ralston, A. 1947. Fatty Acids and Derivatives, 867–909. 2nd ed. London: Chapman Hall.
  • Santilan-Jimenez, E., T. Morgan, J. Lacny, S. Mohapatra, and M. Croker. 2013. “Catalytic Deoxygenation of Triglycerides and Fatty Acids to Hydrocarbons over Carbon-Supported Nickel.” Fuel 103: 1010–1017. doi: 10.1016/j.fuel.2012.08.035
  • Sari, E., C. DiMaggio, M. Kim, S. O. Salley, and K. Y. Simon Ng, 2013a. “Catalytic Conversion of Brown Grease to Green Diesel via Decarboxylation over Activated Carbon Supported Palladium Catalyst." Industrial & Engineering Chemistry Research 52: 11527–11536. doi: 10.1021/ie4010767
  • Sari, E., M. Kim, S. O. Salley, and K. Y. Simon Ng. 2013b. “A Highly Active Nanocomposite Silica-Carbon Supported Palladium Catalyst for Decarboxylation of Free Fatty Acids for Green Diesel Production: Correlation of Activity and Catalyst Properties.” Applied Catalyis A: General 467: 261–269. doi: 10.1016/j.apcata.2013.07.053
  • Snare, M., I. Kubickova, P. Maki-Arvela, D. Chicova, K. Eranen, and D. Y. Murzin. 2008. “Catalytic Deoxygenation of Unsaturated Renewable Feedstocks for Production of Diesel Fuel Hydrocarbons.” Fuel, 87: 933–945. doi: 10.1016/j.fuel.2007.06.006
  • Snare, M., I. Kubickova, P. Maki-Arvela, K. Eranen, J. Warna, and D. Y. Murzin. 2007. “Production of Diesel Fuel from Renewable Feeds: Kinetics of Ethyl Stearate Decarboxylation.” Chemical Engineering Journal 134: 29–34. doi: 10.1016/j.cej.2007.03.064
  • Tan, S., Z. Zhang, J. Sun, and Q. Wang. 2013. “Recent Progress of Catalytic Pyrolysis of Biomass by HZSM-5.” Chinese Journal of Catalysis 34: 641–650. doi: 10.1016/S1872-2067(12)60531-2
  • Tilton, J. A., W. M. Smith, and W. G. Hockberger. 1948. “Production of High Cetane Number Diesel Fuels by Hydrogenation.” Industrial and Engineering Chemistry 40(7): 1269–1273. doi: 10.1021/ie50463a021
  • Yasin, G., M. I. Bhanger, T. M. Ansari, S. M. S. R. Naqvi, and F. N. Talpur. 2012. “Quality and Chemistry of Crude Oils.” Journal of Petroleum Technology and Alternative Fuels 3(3): 29–35.
  • Zhang, A., Q. Ma, K. Wang, X. Liu, P. Shuler, and Y. Tang. 2006. “Naphthenic Acid Removal from Crude Oil Through Catalytic Decarboxylation on Magnesium Oxide.” Applied Catalysis A: General 303: 103–109. doi: 10.1016/j.apcata.2006.01.038
  • Zhang, Z., Y. Sun, Y. Lao, and W. Lin. 1999. “Catalytic Decarboxylation of Fatty Acid by Iron-Containing Minerals in Immature Oil Source Rocks at Low Temperature.” Chinese Science Bulletin 44: 1523–1527. doi: 10.1007/BF03183578

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.