109
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Thermodynamic optimization for irreversible thermal Brownian motors, energy selective electron engines and thermionic devices

, &
Pages 1218-1222 | Received 10 Jun 2018, Accepted 24 Aug 2018, Published online: 19 Sep 2018

References

  • Açıkkalp, E. 2016. “Analysis of a Brownian Heat Engine with Ecological Criteria.” The European Physical Journal Plus 131: 426.
  • Açıkkalp, E., and N. Caner. 2015a. “Application of Exergetic Sustainable Index to the Quantum Irreversible Diesel Refrigerator Cycles for 1D box System.” The European Physical Journal Plus 130: 73.
  • Açıkkalp, E., and N. Caner. 2015b. “Performance Assessment of an Irreversible Nano Brayton Cycle Operating with Maxwell-Boltzmann gas.” The European Physical Journal Plus 130: 93.
  • Ahmadi, M. H., and M. A. Ahmadi. 2014. “Thermodynamic Analysis and Optimisation of an Irreversible Radiative-Type Heat Engine by Using non-Dominated Sorting Genetic Algorithm.” International Journal of Ambient Energy 37: 403–408. doi: 10.1080/01430750.2014.977498
  • Ahmadi, M. H., and M. A. Ahmadi. 2016. “Multi Objective Optimization of Performance of Three-Heat-Source Irreversible Refrigerators Based Algorithm NSGAII.” Renewable and Sustainable Energy Reviews 60: 784–794. doi: 10.1016/j.rser.2015.12.181
  • Ahmadi, M. H., M. A. Ahmadi, M. Mehrpooya, S. M. Pourkiaei, and M. Khalili. 2014. “Thermodynamic Analysis and Evolutionary Algorithm Based on Multi-Objective Optimisation of the Rankine Cycle Heat Engine.” International Journal of Ambient Energy 37: 363–371. doi: 10.1080/01430750.2014.973121
  • Ahmadi, M. H., M. A. Ahmadi, and F. Pourfayaz. 2015. “Performance Assessment and Optimization of an Irreversible Nano-Scale Stirling Engine Cycle Operating with Maxwell-Boltzmann gas.” The European Physical Journal Plus 130: 190.
  • Ahmadi, M. H., M. A. Ahmadi, and F. Pourfayaz. 2016. “Thermodynamic Analysis and Evolutionary Algorithm Based on Multi-Objective Optimization Performance of Actual Power Generating Thermal Cycles.” Applied Thermal Engineering 99: 996–1005. doi: 10.1016/j.applthermaleng.2016.01.122
  • Ahmadi, M. H., M. A. Ahmadi, and S. A. Sadatsakkak. 2015. “Thermodynamic Analysis and Performance Optimization of Irreversible Carnot Refrigerator by Using Multi-Objective Evolutionary Algorithms (MOEAs).” Renewable and Sustainable Energy Reviews 51: 1055–1070. doi: 10.1016/j.rser.2015.07.006
  • Ahmadi, M. H., H. Sayyaadi, and H. Hosseinzadeh. 2015. “Optimization of Output Power and Thermal Efficiency of Solar-Dish Stirling Engine Using Finite Time Thermodynamic Analysis.” Heat Transfer-Asian Research 44: 347–376. doi: 10.1002/htj.21125
  • Andresen, B. 2011. “Current Trends in Finite-Time Thermodynamics.” Angewandte Chemie International Edition 50: 2690–2704. doi: 10.1002/anie.201001411
  • Andresen, B., R. S. Berry, M. J. Ondrechen, and P. Salamon. 1984. “Thermodynamics for Processes in Finite Time.” Accounts of Chemical Research 17: 266–271. doi: 10.1021/ar00104a001
  • Asfaw, M. 2008. “Modeling an Efficient Brownian Heat Engine.” European Physical Journal B: Condensed Matter and Complex Systems 65: 109–116. doi: 10.1140/epjb/e2008-00308-5
  • Bejan, A. 1996. “Entropy Generation Minimization: The new Thermodynamics of Finite-Size Devices and Finite-Time Processes.” Journal of Applied Physics 79: 1191–1218. doi: 10.1063/1.362674
  • Bi, Y. H., and L. G. Chen. 2017. Finite Time Thermodynamic Optimization for Air Heat Pumps. Beijing: Science Press. (in Chinese).
  • Chandra, H., and S. C. Kaushik. 2013. “Exergetic Analysis of Closed Brayton Thermal Power Cycle with Reheater, Regenerator and Intercooler.” International Journal of Ambient Energy 34: 122–130. doi: 10.1080/01430750.2012.740426
  • Chen, L. G. 2005. Finite-Time Thermodynamic Analysis of Irreversible Processes and Cycles. Beijing: Higher Education Press. (in Chinese).
  • Chen, L. G., Z. M. Ding, and F. R. Sun. 2010. “Performance Analysis of a Vacuum Thermionic Refrigerator with External Heat Transfer.” Journal of Applied Physics 107: 104507. doi: 10.1063/1.3428419
  • Chen, L. G., Z. M. Ding, and F. R. Sun. 2011a. “A Generalized Model of an Irreversible Thermal Brownian Refrigerator and its Performance.” Applied Mathematical Modelling 35: 2945–2958. doi: 10.1016/j.apm.2010.12.008
  • Chen, L. G., Z. M. Ding, and F. R. Sun. 2011b. “Model of a Total Momentum Filtered Energy Selective Electron Heat Pump Affected by Heat Leakage and its Performance Characteristics.” Energy 36: 4011–4018. doi: 10.1016/j.energy.2011.04.049
  • Chen, L. G., Z. M. Ding, and F. R. Sun. 2011c. “Optimum Performance Analysis of Feynman’s Engine as Cold and Hot Ratchets.” Journal of Non-Equilibrium Thermodynamics 36: 155–177.
  • Chen, L. G., Z. M. Ding, J. L. Zhou, W. H. Wang, and F. R. Sun. 2017. “Thermodynamic Performance Optimization for an Irreversible Vacuum Thermionic Generator.” The European Physical Journal Plus 132: 293. doi: 10.1140/epjp/i2017-11561-2
  • Chen, L. G., and H. J. Feng. 2016. “Generalized Thermodynamic Optimization for Iron and Steel Production Processes.” Entropy 18: 353.
  • Chen, L. G., F. K. Meng, and F. R. Sun. 2016. “Thermodynamic Analyses and Optimizations for Thermoelectric Devices: the State of the Arts.” Science China Technological Sciences 59: 442–455. doi: 10.1007/s11431-015-5970-5
  • Chen, L. G., and F. R. Sun. 2004. Advances in Finite Time Thermodynamics: Analysis and Optimization. New York: Nova Science Publishers.
  • Chen, L. G., C. Wu, and F. R. Sun. 1999. “Finite Time Thermodynamic Optimization of Entropy Generation Minimization of Energy Systems.” Journal of Non-Equilibrium Thermodynamics 24: 327–359.
  • Chen, L. G., and S. J. Xia. 2017a. Generalized Thermodynamic Dynamic-Optimization for Irreversible Cycles–Engineering Thermodynamic Plants and Generalized Engine Cycles. Beijing: Science Press.
  • Chen, L. G., and S. J. Xia. 2017b. Generalized Thermodynamic Dynamic-Optimization for Irreversible Cycles– Thermodynamic and Chemical Theoretical Cycles. Beijing: Science Press.
  • Chen, L. G., and S. J. Xia. 2017c. Generalized Thermodynamic Dynamic-Optimization for Irreversible Processes. Beijing: Science Press.
  • Chen, L. G., X. Q. Zhu, F. R. Sun, and C. Wu. 2007. “Ecological Optimisation of a Generalised Irreversible Carnot Refrigerator for a Generalized Heat Transfer law.” International Journal of Ambient Energy 28: 213–219. doi: 10.1080/01430750.2007.9675046
  • Ding, Z. M. 2011. Thermodynamic Optimization for Three Kinds of Irreversible Microscopic Energy Conversion Systems. Ph. D. Thesis, Naval University of Engineering, Wuhan, China, 2011. (in Chinese).
  • Ding, Z. M., L. G. Chen, Y. L. Ge, and F. R. Sun. 2013. “Thermodynamic Performance Optimization for Irreversible Double-Resonance Energy Selective Electron Refrigerator.” Journal of Thermal Science and Technology 12: 368–376. (in Chinese).
  • Ding, Z. M., L. G. Chen, Y. L. Ge, and F. R. Sun. 2015a. “Linear Irreversible Thermodynamic Performance Analyses for a Generalized Irreversible Thermal Brownian Refrigerator.” International Journal of Energy & Environment 6: 143–152.
  • Ding, Z. M., L. G. Chen, Y. L. Ge, and F. R. Sun. 2015b. “Performance Analysis for an Irreversible Combined Thermionic-Thermoelectric Generator with Finite Rate Heat Transfer.” Environmental Engineering and Management Journal 14: 97–108. doi: 10.30638/eemj.2015.012
  • Ding, Z. M., L. G. Chen, Y. L. Ge, and F. R. Sun. 2016. “Performance Optimization of Total Momentum Filtering Double-Resonance Energy Selective Electron Heat Pump.” Physica A: Statistical Mechanics and its Applications 447: 49–61. doi: 10.1016/j.physa.2015.11.017
  • Ding, Z. M., L. G. Chen, and F. R. Sun. 2010a. “Performance Characteristic of Energy Selective Electron (ESE) Refrigerator with Filter Heat Conduction.” Revista Mexicana de Física 56: 125–131.
  • Ding, Z. M., L. G. Chen, and F. R. Sun. 2010b. “Power and Efficiency Performances of a Micro Thermal Brownian Heat Engine with and Without External Forces.” Brazilian Journal of Physics 40: 141–149. doi: 10.1590/S0103-97332010000200003
  • Ding, Z. M., L. G. Chen, and F. R. Sun. 2010c. “Thermodynamic Characteristic of a Brownian Heat Pump in a Spatially Periodic Temperature Field.” Science China Physics, Mechanics and Astronomy 53: 876–885. doi: 10.1007/s11433-010-0181-3
  • Ding, Z. M., L. G. Chen, and F. R. Sun. 2011a. “Ecological Optimization of Energy Selective Electron (ESE) Heat Engine.” Applied Mathematical Modelling 35: 276–284. doi: 10.1016/j.apm.2010.06.003
  • Ding, Z. M., L. G. Chen, and F. R. Sun. 2011b. “Generalized Model and Optimum Performance of an Irreversible Thermal Brownian Microscopic Heat Pump.” Mathematical and Computer Modelling 53: 780–792. doi: 10.1016/j.mcm.2010.10.015
  • Ding, Z., L. Chen, and F. Sun. 2011c. “Modeling and Performance Analysis of Energy Selective Electron (ESE) Engine with Heat Leakage and Transmission Probability.” Science China Physics, Mechanics and Astronomy 54: 1925–1936.
  • Ding, Z. M., L. G. Chen, and F. R. Sun. 2011d. “Performance Characteristic of Energy Selective Electron (ESE) Heat Engine with Filter Heat Conduction.” International Journal of Energy & Environment 2: 627–640.
  • Ding, Z. M., L. G. Chen, and F. R. Sun. 2011e. “Performance Optimization of a Total Momentum Filtered Energy Selective Electron (ESE) Heat Engine with Double Resonances.” Mathematical and Computer Modelling 54: 2064–2076. doi: 10.1016/j.mcm.2011.05.015
  • Ding, Z. M., L. G. Chen, and F. R. Sun. 2011f. Performance optimization of irreversible vacuum thermionic generator, Proceeding of Chinese Society of Engineering Thermophysics on Engineering Thermophysics and Energy Utilization, Paper No. 111024, Wuhan, 2011. (in Chinese).
  • Ding, Z. M., L. G. Chen, and F. R. Sun. 2012a. “Performance Analysis of an Irreversible Energy Selective Electron (ESE) Heat Pump with Heat Leakage.” Journal of the Energy Institute 85: 227–235. doi: 10.1179/1743967112Z.00000000032
  • Ding, Z. M., L. G. Chen, and F. R. Sun. 2012b. “Performance Analysis and Optimization of a Single-Barrier Solid-State Thermionic Refrigerator with External Heat Transfer.” Heat Transfer Engineering 33: 693–703. doi: 10.1080/01457632.2011.635585
  • Ding, Z. M., L. G. Chen, and F. R. Sun. 2015a. “Optimum Performance Analysis of a Combined Thermionic-Thermoelectric Refrigerator with External Heat Transfer.” Journal of the Energy Institute 88: 169–180. doi: 10.1016/j.joei.2014.06.004
  • Ding, Z. M., L. G. Chen, and F. R. Sun. 2015b. “Performance Analysis and Optimization for an Irreversible Semiconductor Solid-State Thermionic Refrigerator.” Journal of Thermal Science and Technology 14: 134–143. (in Chinese).
  • Ding, Z. M., L. G. Chen, and F. R. Sun. 2016. “Heating Load and COP Optimization of a Double Resonance Energy Selective Electron (ESE) Heat Pump.” International Journal of Low-Carbon Technologies 11: 383–392. doi: 10.1093/ijlct/ctt079
  • Ding, Z. M., L. G. Chen, W. H. Wang, Y. L. Ge, and F. R. Sun. 2015. “Exploring the Operation of a Microscopic Energy Selective Electron Engine.” Physica A: Statistical Mechanics and its Applications 431: 94–108. doi: 10.1016/j.physa.2015.03.010
  • Ding, Z. M., L. G. Chen, W. H. Wang, and F. R. Sun. 2015a. “Progress in Study on Finite Time Thermodynamic Performance Optimization for Three Kinds of Microscopic Energy Conversion Systems.” Science China Technological Sciences 45: 889–918. (in Chinese).
  • Ding, Z. M., L. G. Chen, W. H. Wang, and F. R. Sun. 2015b. Study on the coefficient of performance characteristics for single resonance energy selective electron refrigerator, Proceeding of Chinese Society of Engineering Thermophysics on Engineering Thermophysics and Energy Utilization, Paper No. 151188, Xiamen, China, 2015. (in Chinese).
  • Ding, Z. M., L. G. Chen, J. L. Zhou, W. H. Wang, and F. R. Sun. 2016. Ecological performance optimization for an irreversible thermionic generator, Proceeding of Chinese Society of Engineering Thermophysics in Colleges and Universities, Paper No. A-2016012, Harbin, 2016. (in Chinese).
  • Dinis, L., I. A. Martínez, É Roldán, J. M. R. Parrondo, and R. A. Rica. 2016. “Thermodynamics at the Microscale: From Effective Heating to the Brownian Carnot Engine.” Journal of Statistical Mechanics: Theory and Experiment 19: 054003. doi: 10.1088/1742-5468/2016/05/054003
  • Feidt, M. 2012. “Thermodynamics of Energy Systems and Processes: A Review and Perspectives.” Journal of Applied Fluid Mechanics 5: 85–98.
  • Feynman, R. P., R. B. Leighton, and M. Sands. 1963. The Feynman Lectures on Physics. Vol. I. New York: Addison-Wesley.
  • Ge, Y. L., L. G. Chen, and F. R. Sun. 2016. “Progress in Finite Time Thermodynamic Studies for Internal Combustion Engine Cycles.” Entropy 18: 139. doi: 10.3390/e18040139
  • Hänggi, P., and F. Marchesoni. 2009. “Artificial Brownian Motors: Controlling Transport on the Nanoscale.” Reviews of Modern Physics 81: 387–442. doi: 10.1103/RevModPhys.81.387
  • Humphrey, T. E. 2003. Mesoscopic Quantum Ratchets and the Thermodynamics of Energy Selective Electron Heat Engines. Ph. D. Thesis, University of New South Wales, Sydney, Australia, 2003.
  • Humphrey, T. E., R. Newbury, R. P. Taylor, and H. Linke. 2002. “Reversible Quantum Brownian Heat Engines for Electrons.” Physical Review Letters 89: 116801. doi: 10.1103/PhysRevLett.89.116801
  • Kosloff, R. 2013. “Quantum Thermodynamics: A Dynamical Viewpoit.” Entropy 15: 2100–2128. doi: 10.3390/e15062100
  • Li, C., R. Li, X. Luo, L. Ma, and J. He. 2014. “Performance Characteristics and Optimal Analysis of an Energy Selective Electron Refrigerator.” International Journal of Thermodynamics 17: 153–160.
  • Mahan, G. D. 1994. “Thermionic Refrigeration.” Journal of Applied Physics 76: 4362–4366. doi: 10.1063/1.357324
  • Martinez, I. A., E. Roldan, L. Dinis, D. Petrov, J. M. R. Parrondo, and R. A. Rica. 2016. “Brownian Carnot Engine.” Nature Physics 12: 67–70. doi: 10.1038/nphys3518
  • Mehrpooya, M., H. Hemmatabady, and M. H. Ahmadi. 2015. “Optimization of Performance of Combined Solar Collector-Geothermal Heat Pump Systems to Supply Thermal Load Needed for Heating Greenhouses.” Energy Conversion and Management 97: 382–392. doi: 10.1016/j.enconman.2015.03.073
  • Muschik, W., and K. H. Hoffmann. 2006. “Endoreversible Thermodynamics: A Tool for Simulating and Comparing Processes of Discrete Systems.” Journal of Non-Equilibrium Thermodynamics 31: 293–317. doi: 10.1515/JNETDY.2006.013
  • Najjar, Y. S. H., and G. M. Tashtoush. 2016. “Performance Analysis of Green Engine-Driven Systems for Space Cooling.” International Journal of Ambient Energy 37: 76–84. doi: 10.1080/01430750.2014.882865
  • Noroozian, A., M. S. Sadaghiani, M. H. Ahmadi, and M. Bidi. 2017. “Thermodynamic Analysis and Comparison of Performances of air Standard Atkinson, Otto, and Diesel Cycles with Heat Transfer Considerations.” Heat Transfer-Asian Research 46: 996–1028. doi: 10.1002/htj.21255
  • Parrondo, J. M. R., and B. J. de Cisneros. 2002. “Energetics of Brownian Motors: A Review.” Applied Physics A: Solids and Surfaces 75: 179–191. doi: 10.1007/s003390201332
  • Pekola, J. P., F. Giazotto, and O. P. Saira. 2007. “Radio-frequency Single-Electron Refrigerator.” Physical Review Letters 98: 037201. doi: 10.1103/PhysRevLett.98.037201
  • Raman, R., and G. Maheshwari. 2017. “Performance Analysis of a Generalised Radiative Heat Engine Based on new Maximum Efficient Power Density Approach.” International Journal of Ambient Energy 38: 819–825. doi: 10.1080/01430750.2016.1222962
  • Reimann, P. 2002. “Brownian Motors: Noisy Transport far From Equilibrium.” Physics Reports 361: 57–265. doi: 10.1016/S0370-1573(01)00081-3
  • Sieniutycz, S. 2010. “Thermodynamic Aspects of Power Generation in Imperfect Fuel Cells: Part I.” International Journal of Ambient Energy 31: 195–202. doi: 10.1080/01430750.2010.9675812
  • Sieniutycz, S., and J. Jezowski. 2009. Energy Optimization in Process Systems. Oxford: Elsevier.
  • Sieniutycz, S., and J. Jezowski. 2013. Energy Optimization in Process Systems and Fuel Cells. Oxford: Elsevier.
  • Sieniutycz, S., and J. S. Shiner. 1994. “Thermodynamics of Irreversible Processes and its Relation to Chemical Engineering: Second law Analyses and Finite Time Thermodynamics.” Journal of Non-Equilibrium Thermodynamics 19: 303–348.
  • Sieniutycz, S., and A. Tsirlin. 2017. “Finding Limiting Possibilities of Thermodynamic Systems by Optimization.” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375: 20160219.
  • Su, S., J. Guo, G. Su, and J. Chen. 2012. “Performance Optimum Analysis and Load Matching of an Energy Selective Electron Heat Engine.” Energy 44: 570–575. doi: 10.1016/j.energy.2012.05.044
  • Tu, Z. C. 2008. “Efficiency at Maximum Power of Feynman’s Ratchet as a Heat Engine.” Journal of Physics A: Mathematical and Theoretical 41: 312003. doi: 10.1088/1751-8113/41/31/312003
  • Velasco, S., J. M. M. Roco, A. Medina, and A. Calvo Hernández. 2001. “Feynman’s Ratchet Optimization: Maximum Power and Maximum Efficiency Regimes.” Journal of Physics D: Applied Physics 34: 1000–1006. doi: 10.1088/0022-3727/34/6/323
  • Wang, Y., T. Liao, Y. Zhang, X. Chen, S. Su, and J. Chen. 2016. “Effects of Nanoscale Vacuum gap on Photon-Enhanced Thermionic Emission Devices.” Journal of Applied Physics 119: 045106. doi: 10.1063/1.4940720
  • Wu, C., L. G. Chen, and J. C. Chen. 1999. Recent Advances in Finite Time Thermodynamics. New York: Nova Science Publishers.
  • Xia, S. J., L. G. Chen, and F. R. Sun. 2016. “Maximum Cycle Work Output Optimization for Generalized Radiative law Otto Cycle Engines.” The European Physical Journal Plus 131: 394.
  • Yin, Y., L. G. Chen, and F. Wu. 2017. “Optimal Power and Efficiency of Quantum Stirling Heat Engines.” The European Physical Journal Plus 132: 45. doi: 10.1140/epjp/i2017-11325-0
  • Yu, Y. H., Z. M. Ding, L. G. Chen, W. H. Wang, and F. R. Sun. 2016. “Power and Efficiency Optimization for an Energy Selective Electron Heat Engine with Double-Resonance Energy Filter.” Energy 107: 287–294. doi: 10.1016/j.energy.2016.04.006
  • Zhou, J. L. 2016. Research on Optimal Performance Regions of Energy Selective Electron Engines and Thermionic Refrigerators, Master’s Thesis, Naval University of Engineering, Wuhan, China, 2016. (in Chinese).
  • Zhou, J. L., L. G. Chen, Z. M. Ding, and F. R. Sun. 2016a. “Analysis and Optimization with Ecological Objective Function of Irreversible Single Resonance Energy Selective Electron Heat Engines.” Energy 111: 306–312. doi: 10.1016/j.energy.2016.05.111
  • Zhou, J. L., L. G. Chen, Z. M. Ding, and F. R. Sun. 2016b. “Exploring the Optimal Performance of Irreversible Single Resonance Energy Selective Electron Refrigerator.” The European Physical Journal Plus 131: 149. doi: 10.1140/epjp/i2016-16149-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.