83
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Squeezing flow of Cu-TiO2/H2Ohybrid nanofluid with activation energy and chemical reaction in a Darcy-Forchheimerporous medium

ORCID Icon &
Pages 8816-8829 | Received 19 Jan 2022, Accepted 24 Jun 2022, Published online: 19 Sep 2022

References

  • Ahmad, S., and S. Nadeem. 2020. “Analysis of Activation Energy and its Impact on Hybrid Nanofluid in the Presence of Hall and ion Slip Currents.” Applied Nanoscience 10 (12): 5315–5330. doi:10.1007/s13204-020-01334-w.
  • Bhatti, M. M., K. AI-Khaled, S. U. Khan, W. Chammam, and M. Awais. 2021. “Darcy–Forchheimer Higher-Order Slip Flow of Eyring–Powell Nanofluid with Nonlinear Thermal Radiation and Bioconvection Phenomenon.” Journal of Dispersion Science and Technology, 1–11. doi:10.1080/01932691.2021.1942035.
  • Bhatti, M. M., M. B. Arain, A. Zeeshan, R. Ellahi, and M. H. Doranehgard. 2022. “Swimming of Gyrotactic Microorganism in MHD Williamson Nanofluid Flow Between Rotating Circular Plates Embedded in Porous Medium: Application of Thermal Energy Storage.” Journal of Energy Storage 45: 103511. doi:10.1016/j.est.2021.103511.
  • Bilal, M., I. Khan, T. Gul, A. Tassaddiq, W. Alghamdi, S. Mukhtar, and P. Kumam. 2021. ““Darcy-Forchheimer Hybrid Nano Fluid Flow with Mixed Convection Past an Inclined Cylinder.” Computers, Materials & Continua 66 (2): 2025–2039. doi:10.32604/cmc.2020.012677.
  • Choi, S. U. S. 1995. “Enhancing thermal conductivity of liquids with nanoparticles.” ASME International Mechanical Engineering Congress and Exposition 66: 99–105. report no.:ANL/MSD/CP-84938; CONF-951135-29 ON: DE96004174; TRN: 96:001707.
  • Das, K., S. Jana, and N. Acharya. 2016. “Slip Effects on Squeezing Flow of Nanofluid Between two Parallel Disks.” International Journal of Applied Mechanics and Engineering 21 (1): 5–20. doi:10.1515/ijame-2016-0001.
  • Dinarvand, S., M. N. Rostami, and I. Pop. 2019. “A Novel Hybridity Model for TiO2-CuO/Water Hybrid Nanofluid Flow Over a Static/Moving Wedge or Corner.” Scientific Reports 9: 1–11. doi:10.1038/s41598-019-52720-6.
  • Domairry, G., and M. Hatami. 2014. “Squeezing Cu–Water Nanofluid Flow Analysis Between Parallel Plates by DTM-Padé Method.” Journal of Molecular Liquids 193: 37–44. doi:10.1016/j.molliq.2013.12.034.
  • Esfe, M. H., S. Wongwises, A. Naderi, A. Asadi, M. R. Safaei, H. Rostamian, M. Dahari, and A. Karimipour. 2015. “Thermal Conductivity of Cu/TiO2-Water/EG Hybrid Nanofluid: Experimental Data and Modelling Using Artificial Neural Network and Correlation.” International Communications in Heat and Mass Transfer 66: 100–104. doi:10.1016/j.icheatmasstransfer.2015.05.014.
  • Gul, H., M. Ramzan, J. D. Chung, Y. M. Chu, and S. Kadry. 2021. “Multiple Slips Impact in the MHD Hybrid Nanofluid Flow with Cattaneo–Christov Heat Flux and Autocatalytic Chemical Reaction.” Scientific Reports 11: 14625. doi:10.1038/s41598-021-94187-4.
  • Hayat, T., F. Haider, T. Muhammad, and A. Alsaedi. 2017. “On Darcy-Forchheimer Flow of Viscoelastic Nanofluids: A Comparative Study.” Journal of Molecular Liquids 233: 278–287. doi:10.1016/j.molliq.2017.03.035.
  • Hayat, T., S. A. Khan, M. I. Khan, and A. Alsaedi. 2018. “Impact of Activation Energy in Nonlinear Mixed Convective Chemically Reactive Flow of Third Grade Nanomaterial by a Rotating Disk.” International Journal of Chemical Reactor Engineering 17 (3): 20180170. doi:10.1515/ijcre-2018-0170.
  • Hayat, T., and S. Nadeem. 2017. “Heat Transfer Enhancement with Ag–CuO/Water Hybrid Nanofluid.” Results in Physics 7: 2317–2324. doi:10.1016/j.rinp.2017.06.034.
  • Hayat, T., A. Yousaf, M. Mustafa, and S. Obaidat. 2011. “MHD Squeezing Flow of Second-Grade Fluid Between two Parallel Disks.” International Journal of Numerical Methods in Fluids 69: 399–410. doi:10.1002/fld.2565.
  • Ibrahim, S. M., F. Mabood, K. Suneetha, and G. Lorenzini. 2017. “Effects of Chemical Reaction on Combined Heat and Mass Transfer by Laminar Mixed Convection Flow from Vertical Surface with Induced Magnetic Field and Radiation.” Journal of Engineering Thermophysics 26 (2): 234–255. doi:10.1134/S1810232817020084.
  • Jyothi, A. M., R. S. Varun Kumar, J. K. Madhukesh, B. C. Prasannakumara, and G. K. Ramesh. 2021. “Squeezing Flow of Casson Hybrid Nanofluid Between Parallel Plates with a Heat Source or Sink and Thermophoretic Particle Deposition.” Heat Transfer, doi:10.1002/htj.22221.
  • Khan, M. I., S. A. Khan, T. Hayat, M. Imran Khan, and A. Alsaedi. 2018. “Arrhenius Activation Energy Impact in Binary Chemically Reactive Flow of TiO2-Cu-H2O Hybrid Nanomaterial.” International Journal of Chemical Reactor Engineering 17 (3): 20180183. doi:10.1515/ijcre-2018-0183.
  • Khan, N. S., P. Kumam, and P. Thounthong. 2020. “Second law Analysis with Effects of Arrhenius Activation Energy and Binary Chemical Reaction on Nanofluid Flow.” Scientific Reports 10 (1): 1226. doi:10.1038/s41598-020-57802-4.
  • Khan, U., A. Zaib, I. Khan, D. Baleanuand, and K. S. Nisar. 2020. “Enhanced Heat Transfer in Moderately Ionized Liquid due to Hybrid MoS2/SiO2 Nanofluids Exposed by Nonlinear Radiation: Stability Analysis.” Crystals 10 (2): 142. doi:10.3390/cryst10020142.
  • Khashi’ie, N. S., I. Waini, N. M. Arifin, and I. Pop. 2021. “Unsteady Squeezing Flow of Cu-Al2O3/Water Hybrid Nanofluid in a Horizontal Channel with Magnetic Field.” Scientific Reports 11: 14128. doi:10.21203/rs.3.rs-489942/v1.
  • Kumar, R. S. V., A. Alhadhrami, R. J. P. Gowda, R. N. Kumar, and B. C. Prasannakumara. 2021. “Exploration of Arrhenius Activation Energy on Hybrid Nanofluid Flow Over a Curved Stretchable Surface.” ZAMM - Journal of Applied Mathematics and Mechanics 101 (12): e202100035. doi:10.1002/zamm.202100035.
  • Muhammad, T., A. Alsaedi, S. A. Shehzad, and T. Hayat. 2017. “A Revised Model for Darcy-Forchheimer Flow of Maxwell Nanofluid Subject to Convective Boundary Condition.” Chinese Journal of Physics 55 (3): 963–976. doi:10.1016/j.cjph.2017.03.006.
  • Mukhopadhyay, S., P. R. De, K. Bhattacharyya, and G. C. Layek. 2012. “Forced Convective Flow and Heat Transfer Over a Porous Plate in a Darcy-Forchheimer Porous Medium in Presence of Radiation.” Meccanica 47 (1): 153–161. doi:10.1007/s11012-011-9423-3.
  • Mumraiz, S., A. Ali, M. Awais, M. Shutaywi, and Z. Shah. 2020. “Entropy Generation in Electrical Magnetohydrodynamic Flow of Al2O3-Cu/H2O Hybrid Nanofluid with non-Uniform Heat Flux.” Journal of Thermal Analysis and Calorimetry 143: 2135–2148. doi:10.1007/s10973-020-09603-0.
  • Mustafa, M., T. Hayat, and S. Obaidat. 2012. “On Heat and Mass Transfer in the Unsteady Squeezing Flow Between Parallel Plates.” Meccanica 47 (7): 1581–1589. doi:10.1007/s11012-012-9536-3.
  • Nadeem, S., N. Abbas, and M. Y. Malik. 2020. “Inspection of Hybrid-Based Nanofluid Flow Over a Curved Surface.” Computer Methods and Programs in Biomedicine 189: 105193–105196. doi:10.1016/j.cmpb.2019.105193.
  • Nawaz, M. 2020. “Role of Hybrid Nanoparticles in the Thermal Performance of Sutterby Fluid, the Ethylene Glycol.” Physica A: Statistical Mechanics and its Applications 537 (C): 122447–122510. doi:10.1016/j.physa.2019.122447.
  • Ranga Babu, J. A., K. Kiran Kumar, and S. Srinivasa Rao. 2017. “State-of-art Review on Hybrid Nanofluids.” Renewable and Sustainable Energy Reviews 77: 551–565. doi:10.1016/j.rser.2017.04.040.
  • Rostami, M. N., S. Dinarvand, and I. Pop. 2018. “Dual Solutions for Mixed Convective Stagnation-Point Flow of an Aqueous Silica-Alumina Hybrid Nanofluid.” Chinese Journal of Physics 56 (5): 2465–2478. doi:10.1016/j.cjph.2018.06.013.
  • Saeed, A., A. Tassaddiq, A. Khan, M. Jawad, W. Deebani, Z. Shah, and S. Islam. 2020. “Darcy-Forchheimer MHD Hybrid Nanofluid Flow and Heat Transfer Analysis Over a Porous Stretching Cylinder.” Coatings 10 (4), doi:10.3390/coatings10040391.
  • Santhi, M., K. V. Suryanarayana Rao, P. Sudarsana Reddy, and P. Sreedevi. 2021. “Heat and Mass Transfer Characteristics of Radiative Hybrid Nanofluid Flow Over a Stretching Sheet with Chemical Reaction.” Heat Transfer 50 (8), doi:10.1002/htj.22012.
  • Shafiq, A., A. B. Colak, and T. N. Sindhu. 2021b. “Designing Artificial Neural Network of Nanoparticle Diameter and Solid–Fluid Interfacial Layer on Single-Walled Carbon Nanotubes/Ethylene Glycol Nanofluid Flow on Thin Slendering Needles.” International Journal for Numerical Methods in Fluids 93 (12): 3384–3404. doi:10.1002/fld.5038.
  • Shafiq, A., A. B. Colak, T. N. Sindhu, Q. M. Al-Mdallal, and T. Abdeljawad. 2021a. “Estimation of Unsteady Hydromagnetic Williamson Fluid Flow in a Radiative Surface Through Numerical and Artificial Neural Network Modeling.” Scientific Reports 11 (1): 1–21. doi:10.1038/s41598-021-93790-9.
  • Shafiq, A., A. B. Çolak, T. N. Sindhu, and T. Muhammad. 2022. “Optimization of Darcy-Forchheimer Squeezing Flow in Nonlinear Stratified Fluid Under Convective Conditions with Artificial Neural Network.” Heat Transfer Research 53 (3): 67–89. doi:10.1615/HeatTransRes.2021041018.
  • Shafiq, A., S. A. Lone, T. N. Sindhu, Q. M. AI-Mdallal, and G. Rasool. 2021c. “Statistical Modeling for Bioconvective Tangent Hyperbolic Nanofluid Towards Stretching Surface with Zero Mass Flux Condition.” Scientific Reports 11 (1): 1–11. doi:10.1038/s41598-021-93329-y.
  • Shafiq, A., and T. N. Sindhu. 2017. “Statistical Study of Hydromagnetic Boundary Layer Flow of Williamson Fluid Regarding a Radiative Surface.” Results in Physics 7: 3059–3067. doi:10.1016/j.rinp.2017.07.077.
  • Shafiq, A., T. N. Sindhu, and Q. M. Al-Mdallal. 2021d. “A Sensitivity Study on Carbon Nanotubes Significance in Darcy–Forchheimer Flow Towards a Rotating Disk by Response Surface Methodology.” Scientific Reports 11 (1): 1–26. doi:10.1038/s41598-021-87956-8.
  • Shafiq, A., T. N. Sindhu, and C. M. Khalique. 2020. “Numerical Investigation and Sensitivity Analysis on Bioconvective Tangent Hyperbolic Nanofluid Flow Towards Stretching Surface by Response Surface Methodology.” Alexandria Engineering Journal 59 (6): 4533–4548. doi:10.1016/j.aej.2020.08.007.
  • Shanmugapriya, M., R. Sundareswaran, and P. S. Kumar. 2021. “Heat and Mass Transfer Enhancement of MHD Hybrid Nanofluid Flow in the Presence of Activation Energy.” International Journal of Chemical Engineering, 9473226. doi:10.1155/2021/9473226.
  • Sobamowo, M. G., and A. T. Akinshilo. 2018. “On the Analysis of Squeezing Flow of Nanofluid Between two Parallel Plates Under the Influence of Magnetic Field.” Alexandria Engineering Journal 57 (3): 1413–1423. doi:10.1016/j.aej.2017.07.001.
  • Stefan, M. J. 1874. “Versuch Uber die Scheinbare Adhesion, Sitzungsberichte der Akademie der Wissenschaften in Wien.” Math Naturwissen 69: 713–721. doi:10.1002/andp.18752300213.
  • Ullah, I., I. Khan, and S. Shafie. 2018. “Heat and Mass Transfer in Unsteady MHD Slip Flow of Casson Fluid Over a Moving Wedge Embedded in a Porous Medium in the Presence of Chemical Reaction:Numerical Solutions Using Keller-Box Method.” Numerical Methods for Partial Differential Equations 34 (5): 1–25. doi:10.1002/NUM.22221.
  • Upreti, H., A. K. Pandey, and M. Kumar. 2021. “Unsteady Squeezing Flow of Magnetic Hybrid Nanofluids Within Parallel Plates and Entropy Generation.” Heat Transfer 50 (1): 105–125. doi:10.1002/htj.21994.
  • Waini, I., A. Ishak, and I. Pop. 2019. “Unsteady Flow and Heat Transfer Past a Stretching/Shrinking Sheet in a Hybrid Nanofluid.” International Journal of Heat and Mass Transfer 136 (6): 288–297. doi:10.1016/j.ijheatmasstransfer.2019.02.101.
  • Waini, I., A. Ishak, and I. Pop. 2020. “Squeezed Hybrid Nanofluid Flow Over a Permeable Sensor Surface.” Mathematics 8 (6): 1–20. doi:10.3390/math8060898.
  • Waini, I., A. Ishak, and I. Pop. 2021. ““Hybrid Nanofluid Flow with Homogeneous-Heterogeneous Reactions.” Computers, Materials & Continua 68 (3): 3255–3269. doi:10.32604/cmc.2021.017643.
  • Zainal, N. A., R. Nazar, K. Naganthran, and I. Pop. 2021. “Flow and Heat Transfer Over a Permeable Moving Wedge in a Hybrid Nanofluid with Activation Energy and Binary Chemical Reaction.” International Journal of Numerical Methods for Heat & Fluid Flow, doi:10.1108/HFF-04-2021-0298.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.