4,483
Views
234
CrossRef citations to date
0
Altmetric
Articles

UAS, sensors, and data processing in agroforestry: a review towards practical applications

, , , , ORCID Icon, & show all
Pages 2349-2391 | Received 03 Oct 2016, Accepted 05 Feb 2017, Published online: 09 Mar 2017

References

  • Ambrosia, V. G., S. Wegener, T. Zajkowski, D. V. Sullivan, S. Buechel, F. Enomoto, … E. Hinkley. 2011. “The Ikhana Unmanned Airborne System (UAS) Western States Fire Imaging Missions: From Concept to Reality (2006–2010).” Geocarto International 26 (2): 85–101. doi:10.1080/10106049.2010.539302.
  • Amon, P., U. Riegl, P. Rieger, and M. Pfennigbauer, & OTHERS. (2015). UAV-Based Laser Scanning to Meet Special Challenges in LiDAR Surveying. Retrieved from http://www.ee.co.za/wp-content/uploads/2015/08/Philipp-Amon-Ursula-Riegl-Peter-Rieger-Martin-Pfenningbauer.pdf
  • Anderson, K., and K. J. Gaston. 2013. “Lightweight Unmanned Aerial Vehicles will Revolutionize Spatial Ecology.” Frontiers in Ecology and the Environment 11 (3): 138–146. doi:10.1890/120150.
  • Austin, R. (2010). Unmanned Aircraft Systems: UAVS Design, Development and Deployment - Reg Austin. Retrieved July 8, 2016, from http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470058196.html
  • AUVSI Economic Report, 2013. The Economic Impact of Unmanned Aircraft Systems Integration in the United States. Available online at: https://higherlogicdownload.s3.amazonaws.com/AUVSI/958c920a-7f9b-4ad2-9807-f9a4e95d1ef1/UploadedImages/New_Economic%20Report%202013%20Full.pdf (accessed 17 January 2017).
  • Ballesteros, R., J. F. Ortega, D. Hernández, and M. Á. Moreno. 2015. “Characterization of Vitis vinifera L. Canopy Using Unmanned Aerial Vehicle-Based Remote Sensing and Photogrammetry Techniques.” American Journal of Enology and Viticulture, ajev.2014.14070. 10.5344/ajev.2014.14070.
  • Baluja, J., M. P. Diago, P. Balda, R. Zorer, F. Meggio, F. Morales, and J. Tardaguila. 2012. “Assessment of Vineyard Water Status Variability by Thermal And Multispectral Imagery Using an Unmanned Aerial Vehicle (UAV).” Irrigation Science 30 (6): 511–522. doi:10.1007/s00271-012-0382-9.
  • Bareth, G., J. Bendig, N. Tilly, D. Hoffmeister, H. Aasen, and A. Bolten. 2016. “A Comparison of UAV- and TLS-derived Plant Height for Crop Monitoring: Using Polygon Grids for the Analysis of Crop Surface Models (CSMs).” Photogrammetrie - Fernerkundung - Geoinformation 2016 (2): 85–94. doi:10.1127/pfg/2016/0289.
  • Bellvert, J., and J. Girona. 2012. “The Use of Multispectral and Thermal Images as a Tool for Irrigation Scheduling in Vineyards.” In The Use of Remote Sensing and Geographic Information Systems for Irrigation Management in Southwest Europe», eds M. Erena, A. López-Francos, S. Montesinos, and J. F. Y Berthoumieu, 131–138, Zaragoza: Options Méditerranéennes. Serie B: Studies and Researchs, (67).
  • Bellvert, J., J. Marsal, J. Girona, V. Gonzalez-Dugo, E. Fereres, S. L. Ustin, and P. J. Zarco-Tejada. 2016. “Airborne Thermal Imagery to Detect the Seasonal Evolution of Crop Water Status in Peach, Nectarine and Saturn Peach Orchards.” Remote Sensing 8 (1): 39. doi:10.3390/rs8010039.
  • Bellvert, J., P. J. Zarco-Tejada, J. Girona, and E. Fereres. 2013. “Mapping Crop Water Stress Index in a “Pinot-noir” Vineyard: Comparing Ground Measurements with Thermal Remote Sensing Imagery from an Unmanned Aerial Vehicle.” Precision Agriculture 15 (4): 361–376. doi:10.1007/s11119-013-9334-5.
  • Bendig, J., A. Bolten, S. Bennertz, J. Broscheit, S. Eichfuss, and G. Bareth. 2014. “Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging.” Remote Sensing 6 (11): 10395–10412. doi:10.3390/rs61110395.
  • Bendig, J., K. Yu, H. Aasen, A. Bolten, S. Bennertz, J. Broscheit, … G. Bareth. 2015. “Combining UAV-Based Plant Height from Crop Surface Models, Visible, and Near Infrared Vegetation Indices for Biomass Monitoring in Barley.” International Journal of Applied Earth Observation and Geoinformation 39: 79–87. doi:10.1016/j.jag.2015.02.012.
  • Bendig, J. V. 2015. Unmanned Aerial Vehicles (UAVs) for Multi-Temporal Crop Surface Modelling. A New Method for Plant Height and Biomass Estimation Based on RGB-Imaging. Cologne: Universität zu Köln. Retrieved from: http://kups.ub.uni-koeln.de/6018/.
  • Berni, J. A. J., P. J. Zarco-Tejada, L. Suarez, and E. Fereres. 2009. “Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring from an Unmanned Aerial Vehicle.” IEEE Transactions on Geoscience and Remote Sensing 47 (3): 722–738. doi:10.1109/TGRS.2008.2010457.
  • Blaschke, T. 2010. “Object Based Image Analysis for Remote Sensing.” ISPRS Journal of Photogrammetry and Remote Sensing 65 (1): 2–16. doi:10.1016/j.isprsjprs.2009.06.004.
  • Bobillet, W., J. P. Da Costa, C. Germain, O. Lavialle, and G. Grenier (2003). Row Detection in High Resolution Remote Sensing Images of Vine Fields. In Precision Agriculture: Papers from the 4th European Conference on Precision Agriculture (pp. 81–87). Berlin, Germany.
  • Bramley, R. G. V., and R. P. Hamilton. 2007. “Terroir and Precision Viticulture: Are They Compatible?” Journal International Des Sciences de La Vigne et Du Vin 41 (1): 1.
  • Calderón, R., J. A. Navas-Cortés, C. Lucena, and P. J. Zarco-Tejada. 2013. “High-resolution Airborne Hyperspectral and Thermal Imagery for Early Detection of Verticillium Wilt of Olive Using Fluorescence,Temperature and Narrow-Band Spectral Indices. .” Remote Sensing of Environment 139: 231–245. doi:10.1016/j.rse.2013.07.031.
  • Calderón, R., J. A. Navas-Cortés, and P. J. Zarco-Tejada. 2015. “Early Detection and Quantification of Verticillium Wilt in Olive Using Hyperspectral and Thermal Imagery over Large Areas.” Remote Sensing 7 (5): 5584–5610. doi:10.3390/rs70505584.
  • Candiago, S., F. Remondino, M. De Giglio, M. Dubbini, and M. Gattelli. 2015. “Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images.” Remote Sensing 7 (4): 4026–4047. doi:10.3390/rs70404026.
  • Caturegli, L., M. Corniglia, M. Gaetani, N. Grossi, S. Magni, M. Migliazzi, … M. Volterrani. 2016. “Unmanned Aerial Vehicle to Estimate Nitrogen Status of Turfgrasses.” PLoS One 11 (6): e0158268. doi:10.1371/journal.pone.0158268.
  • Chisholm, R. A., J. Cui, S. K. Y. Lum, and B. M. Chen. 2013. “UAV LiDAR for Below-Canopy Forest Surveys.” Journal of Unmanned Vehicle Systems 1 (1): 61–68. doi:10.1139/juvs-2013-0017.
  • Chuvieco, E., M. P. Martín, and A. Palacios. 2002. “Assessment of Different Spectral Indices in the Red-Near-Infrared Spectral Domain for Burned Land Discrimination.” International Journal of Remote Sensing 23 (23): 5103–5110. doi:10.1080/01431160210153129.
  • Cohen, Y., V. Alchanatis, M. Meron, Y. Saranga, and J. Tsipris. 2005. “Estimation of Leaf Water Potential by Thermal Imagery and Spatial Analysis.” Journal of Experimental Botany 56 (417): 1843–1852. doi:10.1093/jxb/eri174.
  • Colomina, I., and P. Molina. 2014. “Unmanned Aerial Systems For Photogrammetry and Remote Sensing: A Review.” ISPRS Journal of Photogrammetry and Remote Sensing 92: 79–97. doi:10.1016/j.isprsjprs.2014.02.013.
  • Comba, L., P. Gay, J. Primicerio, and D. Ricauda Aimonino. 2015. “Vineyard Detection from Unmanned Aerial Systems Images.” Computers and Electronics in Agriculture 114: 78–87. doi:10.1016/j.compag.2015.03.011.
  • Cracknell, A. P. 2017. “UAVs: Regulations and Law Enforcement.” International Journal of Remote Sensing 38: 3054–3067.
  • DroneDeploy (2016). Commercial Drone Industry Trends. DroneDeploy’s Commercial Drone Industry Trends. Retrivied from http://info.dronedeploy.com/commercial-drone-industry-trends/.
  • Díaz-Varela, R. A., R. De La Rosa, L. León, and P. J. Zarco-Tejada. 2015. “High-Resolution Airborne UAV Imagery to Assess Olive Tree Crown Parameters Using 3D Photo Reconstruction: Application in Breeding Trials.” Remote Sensing 7 (4): 4213–4232. doi:10.3390/rs70404213.
  • Falkowski, M. J., P. E. Gessler, P. Morgan, A. T. Hudak, and A. M. S. Smith.; (2005). Characterizing and Mapping Forest Fire Fuels Using ASTER Imagery And Gradient Modeling. Retrieved from http://www.treesearch.fs.fed.us/pubs/23874 10.1016/j.foreco.2005.06.013
  • Flener, C., M. Vaaja, A. Jaakkola, A. Krooks, H. Kaartinen, A. Kukko, … P. Alho. 2013. “Seamless Mapping of River Channels at High Resolution Using Mobile LiDAR and UAV-Photography.” Remote Sensing 5 (12): 6382–6407. doi:10.3390/rs5126382.
  • Frankenberger, J. R., C. Huang, and K. Nouwakpo. 2008. “Low-Altitude Digital Photogrammetry Technique to Assess Ephemeral Gully Erosion.” In IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium 4: IV-117-IV-120. doi:10.1109/IGARSS.2008.4779670.
  • Galiano, S. G. 2012. “Assessment of Vegetation Indexes from Remote Sensing: Theoretical Basis.” Paseo Alfonso XIII 52: 65–75.
  • Gamon, J. A., J. Peñuelas, and C. B. Field. 1992. “A Narrow-Waveband Spectral Index that Tracks Diurnal Changes In Photosynthetic Efficiency.” Remote Sensing of Environment 41 (1): 35–44. doi:10.1016/0034-4257(92)90059-S.
  • Gao, B. 1996. “NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space.” Remote Sensing of Environment 58 (3): 257–266. doi:10.1016/S0034-4257(96)00067-3.
  • García, M. J. L., and V. Caselles. 1991. “Mapping Burns and Natural Reforestation Using Thematic Mapper Data.” Geocarto International 6 (1): 31–37. doi:10.1080/10106049109354290.
  • Gatziolis, D., J. F. Lienard, A. Vogs, and N. S. Strigul. 2015. “3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles.” PLoS One 10 (9): e0137765. doi:10.1371/journal.pone.0137765.
  • Geipel, J., G. G. Peteinatos, W. Claupein, and R. Gerhards. 2013. “Enhancement of Micro Unmanned Aerial Vehicles for Agricultural Aerial Sensor Systems.” In Precision Agriculture ’13, Ed. J. V. Stafford, 161–167. Wageningen, The Netherlands: Wageningen Academic Publishers. doi:10.3920/978-90-8686-778-3_18.
  • George, E. A., G. Tiwari, R. N. Yadav, E. Peters, and S. Sadana (2013). UAV Systems for Parameter Identification in Agriculture. In Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS), 2013 IEEE (pp. 270–273). Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6629929
  • Gertler, J. (2012). US Unmanned Aerial Systems. DTIC Document. Retrieved from http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA566235
  • Getzin, S., K. Wiegand, and I. Schöning. 2012. “Assessing Biodiversity in Forests Using Very High-Resolution Images and Unmanned Aerial Vehicles.” Methods in Ecology and Evolution 3 (2): 397–404. doi:10.1111/j.2041-210X.2011.00158.x.
  • Gitelson, A. A., Y. J. Kaufman, and M. N. Merzlyak. 1996. “Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS.” Remote Sensing of Environment 58 (3): 289–298. doi:10.1016/S0034-4257(96)00072-7.
  • Gitelson, A. A., Y. J. Kaufman, R. Stark, and D. Rundquist. 2002. “Novel Algorithms for Remote Estimation of Vegetation Fraction.” Remote Sensing of Environment 80 (1): 76–87. doi:10.1016/S0034-4257(01)00289-9.
  • Gnyp, M. L., G. Bareth, F. Li, V. I. S. Lenz-Wiedemann, W. Koppe, Y. Miao, … F. Zhang. 2014. “Development and Implementation of a Multiscale Biomass Model Using Hyperspectral Vegetation Indices for Winter Wheat in the North China Plain.” International Journal of Applied Earth Observation and Geoinformation 33: 232–242. doi:10.1016/j.jag.2014.05.006.
  • Gómez-Candón, D., A. I. D. Castro, and F. López-Granados. 2013. “Assessing the Accuracy of Mosaics from Unmanned Aerial Vehicle (UAV) Imagery for Precision Agriculture Purposes in Wheat.” Precision Agriculture 15 (1): 44–56. doi:10.1007/s11119-013-9335-4.
  • Gonzalez-Dugo, V., P. Zarco-Tejada, E. Nicolás, P. A. Nortes, J. J. Alarcón, D. S. Intrigliolo, and E. Fereres. 2013. “Using High Resolution UAV Thermal Imagery to Assess the Variability in the Water Status of Five Fruit Tree Species within a Commercial Orchard.” Precision Agriculture 14 (6): 660–678. doi:10.1007/s11119-013-9322-9.
  • Grenzdörffer, G. J., A. Engel, and B. Teichert. 2008. “The Photogrammetric Potential of Low-Cost UAVs in Forestry and Agriculture.” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 31 (B3): 1207–1214.
  • Haboudane, D., J. R. Miller, N. Tremblay, P. J. Zarco-Tejada, and L. Dextraze. 2002. “Integrated Narrow-Band Vegetation Indices for Prediction of Crop Chlorophyll Content for Application to Precision Agriculture.” Remote Sensing of Environment 81 (2–3): 416–426. doi:10.1016/S0034-4257(02)00018-4.
  • Hague, T., N. D. Tillett, and H. Wheeler. 2006. “Automated Crop and Weed Monitoring in Widely Spaced Cereals.” Precision Agriculture 7 (1): 21–32. doi:10.1007/s11119-005-6787-1.
  • Hardin, P. J., and R. R. Jensen. 2011. “Small-Scale Unmanned Aerial Vehicles in Environmental Remote Sensing: Challenges and Opportunities.” GIScience & Remote Sensing 48 (1): 99–111. doi:10.2747/1548-1603.48.1.99.
  • Herwitz, S. R., L. F. Johnson, S. E. Dunagan, R. G. Higgins, D. V. Sullivan, J. Zheng, … J. A. Brass. 2004. “Imaging from an Unmanned Aerial Vehicle: Agricultural Surveillance and Decision Support.” Computers and Electronics in Agriculture 44 (1): 49–61. doi:10.1016/j.compag.2004.02.006.
  • Holden, Z. A., P. Morgan, A. M. S. Smith, M. G. Rollins, and P. E. Gessler; (2005). Evaluation of Novel Thermally Enhanced Spectral Indices for Mapping Fire Perimeters and Comparisons with Fire Atlas Data. Retrieved from http://www.treesearch.fs.fed.us/pubs/24608 10.1080/01431160500239008
  • Honkavaara, E., J. Kaivosoja, J. Mäkynen, I. Pellikka, L. Pesonen, H. Saari, ... T. Rosnell. 2012. “Hyperspectral Reflectance Signatures and Point Clouds for Precision Agriculture by Light Weight UAV Imaging System.” ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences I-7: 353–358. doi:10.5194/isprsannals-i-7-353-2012.
  • Honkavaara, E., H. Saari, J. Kaivosoja, I. Pölönen, T. Hakala, P. Litkey, … L. Pesonen. 2013. “Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture.” Remote Sensing 5 (10): 5006–5039. doi:10.3390/rs5105006.
  • Huete, A. R. 1988. “A Soil-Adjusted Vegetation Index (SAVI).” Remote Sensing of Environment 25 (3): 295–309. doi:10.1016/0034-4257(88)90106-X.
  • Idso, S. B., R. D. Jackson, P. J. Pinter, R. J. Reginato, and J. L. Hatfield. 1981. “Normalizing the Stress-Degree-Day Parameter for Environmental Variability.” Agricultural Meteorology 24: 45–55. doi:10.1016/0002-1571(81)90032-7.
  • Israel, M. 2011. “A UAV-Based Roe Deer Fawn Detection System.” International Archives of Photogrammetry and Remote Sensing 38: 1–5.
  • Jenkins, D., and B. Vasigh (2013, March). Economic Report of Unmanned Aircraft Systems Integration in the United States. Association for Unmanned Vehicle Systems International. Retrieved from http://www.auvsi.org/auvsiresources/economicreport
  • Jenks, C. 2010. “Law from above: Unmanned Aerial Systems, Use of Force, and the Law of Armed Conflict.” North Dakota Law Review 85: 649.
  • Jia, Y., Z. Su, Q. Zhang, Y. Zhang, Y. Gu, and Z. Chen. 2015. “Research on UAV Remote Sensing Image Mosaic Method Based on SIFT.” International Journal of Signal Processing, Image Processing and Pattern Recognition 8 (11): 365–374. doi:10.14257/ijsip.2015.8.11.33.
  • Jones, H. G. 1999. “Use of Infrared Thermometry for Estimation of Stomatal Conductance as a Possible Aid to Irrigation Scheduling.” Agricultural and Forest Meteorology 95 (3): 139–149. doi:10.1016/S0168-1923(99)00030-1.
  • Jordan, C. F. 1969. “Derivation of Leaf-Area Index from Quality of Light on the Forest Floor.” Ecology 50 (4): 663–666. doi:10.2307/1936256.
  • Justice, C. O., E. Vermote, J. R. G. Townshend, R. Defries, D. P. Roy, D. K. Hall, … M. J. Barnsley. 1998. “The Moderate Resolution Imaging Spectroradiometer (MODIS): Land Remote Sensing for Global Change Research.” IEEE Transactions on Geoscience and Remote Sensing 36 (4): 1228–1249. doi:10.1109/36.701075.
  • Juul, M. (2015, October). Civil Drones in the European Union - Think Tank. Retrieved July 19, 2016, from http://www.europarl.europa.eu/thinktank/en/document.html?reference=EPRS_BRI(2015)571305
  • Kalisperakis, I., C. Stentoumis, L. Grammatikopoulos, and K. Karantzalos. 2015. “Leaf Area Index Estimation in Vineyards from UAV Hyperspectral Data, 2D Image Mosaics and 3D Canopy Surface Models.” ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-1/W4: 299–303. doi:10.5194/isprsarchives-XL-1-W4-299-2015.
  • Klemas, V. V. 2015. “Coastal and Environmental Remote Sensing from Unmanned Aerial Vehicles: An Overview.” Journal of Coastal Research 1260–1267. doi:10.2112/JCOASTRES-D-15-00005.1.
  • Lagüela, S., L. Díaz−Vilariño, D. Roca, and H. Lorenzo. 2015. “Aerial Thermography from Low-Cost UAV for the Generation of Thermographic Digital Terrain Models.” Opto-Electronics Review 23 (1): 78–84. doi:10.1515/oere-2015-0006.
  • López-López, M., R. Calderón, V. González-Dugo, P. J. Zarco-Tejada, and E. Fereres. 2016. “Early Detection and Quantification of Almond Red Leaf Blotch Using High-Resolution Hyperspectral and Thermal Imagery.” Remote Sensing 8 (4): 276. doi:10.3390/rs8040276.
  • Lukas, V., J. Novák, L. Neudert, I. Svobodova, F. Rodriguez-Moreno, M. Edrees, and J. Kren. 2016. “The Combination of UAV Survey and Landsat Imagery for Monitoring of Crop Vigor in Precision Agriculture.” ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B8: 953–957. doi:10.5194/isprsarchives-XLI-B8-953-2016.
  • Malinowski, R., B. Höfle, K. Koenig, G. Groom, W. Schwanghart, and G. Heckrath. 2016. “Local-Scale Flood Mapping on Vegetated Floodplains from Radiometrically Calibrated Airborne LiDAR Data.” ISPRS Journal of Photogrammetry and Remote Sensing 119: 267–279. doi:10.1016/j.isprsjprs.2016.06.009.
  • Martín Isabel, M., P. Del, and E. Chuvieco Salinero (1998). Cartografía de grandes incendios forestales en la Península Ibérica a partir de imágenes NOAA-AVHRR. Retrieved from http://dspace.uah.es/dspace/handle/10017/1059
  • Martín, P., P. J. Zarco-Tejada, M. R. González, and A. Berjón. 2015. “Using Hyperspectral Remote Sensing to Map Grape Quality in “Tempranillo” Vineyards Affected by Iron Deficiency Chlorosis.” VITIS - Journal of Grapevine Research 46 (1): 7.
  • Matese, A., P. Toscano, S. F. Di Gennaro, L. Genesio, F. P. Vaccari, J. Primicerio, … B. Gioli. 2015. “Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture.” Remote Sensing 7 (3): 2971–2990. doi:10.3390/rs70302971.
  • Mathews, A. J. 2015. “A Practical Uav Remote Sensing Methodology To Generate Multispectral Orthophotos For Vineyards: Estimation of Spectral Reflectance Using Compact Digital Cameras.” International Journal of Applied Geospatial Research 6(4): 65–87. doi:10.4018/ijagr.2015100104.
  • Mathews, A. J., and J. L. R. Jensen. 2013. “Visualizing and Quantifying Vineyard Canopy LAI Using an Unmanned Aerial Vehicle (UAV) Collected High Density Structure from Motion Point Cloud.” Remote Sensing 5 (5): 2164–2183. doi:10.3390/rs5052164.
  • Mejias, L., J. Lai, and T. Bruggemann. 2015. Sensors for Missions. In Handbook of Unmanned Aerial Vehicles (pp. 385–399), Eds. K. P. Valavanis and G. J. Vachtsevanos, Dordrecht, The Netherlands: Springer. Retrieved from: http://link.springer.com/10.1007/978-90-481-9707-1_6.
  • Merino, L., F. Caballero, J. R. Martínez-De-Dios, I. Maza, and A. Ollero. 2011. “An Unmanned Aircraft System for Automatic Forest Fire Monitoring and Measurement.” Journal of Intelligent & Robotic Systems 65 (1–4): 533–548. doi:10.1007/s10846-011-9560-x.
  • Meyer, G. E., and J. C. Neto. 2008. “Verification of Color Vegetation Indices for Automated Crop Imaging Applications.” Computers and Electronics in Agriculture 63 (2): 282–293. doi:10.1016/j.compag.2008.03.009.
  • Motohka, T., K. N. Nasahara, H. Oguma, and S. Tsuchida. 2010. “Applicability of Green-Red Vegetation Index for Remote Sensing of Vegetation Phenology.” Remote Sensing 2 (10): 2369–2387. doi:10.3390/rs2102369.
  • Muchiri, N., and S. Kimathi. 2016. “A Review of Applications and Potential Applications of UAV.” Proceedings of Sustainable Research and Innovation Conference 0 (0): 280–283.
  • Navia, J., I. Mondragon, D. Patino, and J. Colorado (2016). Multispectral Mapping in Agriculture: Terrain Mosaic Using an Autonomous Quadcopter UAV. In 2016 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 1351–1358). Retrieved from http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7502606
  • Nebiker, S., A. Annen, M. Scherrer, and D. Oesch. 2008. “A Light-Weight Multispectral Sensor for Micro UAV—Opportunities for Very High Resolution Airborne Remote Sensing.” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 37(B1): 1193–1199.
  • Nebiker, S., N. Lack, M. Abächerli, and S. Läderach (2016). Light-Weight Multispectral UAV Sensors and Their Capabilities for Predicting Grain Yield and Detecting Plant Diseases. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 963–970.
  • Neto, J. C. (2004). A Combined Statistical-Soft Computing Approach for Classification and Mapping Weed Species in Minimum -Tillage Systems. ResearchGate. Retrieved from https://www.researchgate.net/publication/280148076_A_combined_statistical-soft_computing_approach_for_classification_and_mapping_weed_species_in_minimum_-tillage_systems
  • Nex, F., and F. Remondino. 2013. “UAV for 3D Mapping Applications: A Review.” Applied Geomatics 6 (1): 1–15. doi:10.1007/s12518-013-0120-x.
  • Nolan, A. P., S. Park, M. O’connell, S. Fuentes, D. Ryu, and H. Chung (2015). Automated Detection and Segmentation of Vine Rows Using High Resolution UAS Imagery in a Commercial Vineyard. Presented at the 21st International Congress on Modelling and Simulation, Gold Coast, Australia. Retrieved from https://www.researchgate.net/profile/Mark_Oconnell/publication/284206199_Automated_detection_and_segmentation_of_vine_rows_using_high_resolution_UAS_imagery_in_a_commercial_vineyard/links/566e1c9f08ae1a797e405f39.pdf
  • Otsu, N. 1979. “A Threshold Selection Method from Gray-Level Histograms.” IEEE Transactions on Systems, Man, and Cybernetics 9 (1): 62–66. doi:10.1109/TSMC.1979.4310076.
  • Pajares, G. 2015. “Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs).” Photogrammetric Engineering & Remote Sensing 81 (4): 281–329. doi:10.14358/PERS.81.4.281.
  • Pappalardo, J. (2015). Unmanned Aircraft “Roadmap” Reflects Changing Priorities. Retrieved July 7, 2016, from http://www.nationaldefensemagazine.org/archive/2005/April/Pages/Unmanned_Aircraft5815.aspx
  • Park, S., A. Nolan, D. Ryu, S. Fuentes, E. Hernandez, H. Chung, and M. O’connell (2015). Estimation of Crop Water Stress in a Nectarine Orchard Using High-Resolution Imagery from Unmanned Aerial Vehicle (UAV). In International Congress on Modelling and Simulation (MODSIM)(Tony Weber and Malcolm McPhee 29 November 2015 to 04 December 2015) (pp. 1413–1419). Modelling and Simulation Society of Australia and New Zealand. Retrieved from https://www.researchgate.net/profile/Sigfredo_Fuentes/publication/298070136_park/links/56e5daa008ae68afa112b648.pdf
  • Peña, J. M., J. Torres-Sánchez, A. I. Castro, M. De, Kelly, and F. López-Granados. 2013. “Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images.” PLoS One 8 (10): e77151. doi:10.1371/journal.pone.0077151.
  • Perez, A. J., F. Lopez, J. V. Benlloch, and S. Christensen. 2000. Colour and Shape Analysis Techniques for Weed Detection in Cereal Fields. In Computers and Electronics in Agriculture 25(3): 197–212. Elsevier. Retrieved from: http://cat.inist.fr/?aModele=afficheN&cpsidt=1386838.
  • Pölönen, I., H. Saari, J. Kaivosoja, E. Honkavaara, and L. Pesonen (2013). Hyperspectral Imaging Based Biomass and Nitrogen Content Estimations from Light-Weight UAV. In SPIE Remote Sensing (p. 88870J–88870J). International Society for Optics and Photonics. Retrieved from http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1757263
  • Poulton, C. V., and M. R. Watts. (2016). MIT and DARPA Pack Lidar Sensor Onto Single Chip. Retrieved August 4, 2016, from http://spectrum.ieee.org/tech-talk/semiconductors/optoelectronics/mit-lidar-on-a-chip
  • Primicerio, J., S. F. Di Gennaro, E. Fiorillo, L. Genesio, E. Lugato, A. Matese, and F. P. Vaccari. 2012. “A Flexible Unmanned Aerial Vehicle for Precision Agriculture.” Precision Agriculture 13 (4): 517–523. doi:10.1007/s11119-012-9257-6.
  • Qi, J., A. Chehbouni, A. R. Huete, Y. H. Kerr, and S. Sorooshian. 1994. “A Modified Soil Adjusted Vegetation Index.” Remote Sensing of Environment 48 (2): 119–126. doi:10.1016/0034-4257(94)90134-1.
  • Quater, P. B., F. Grimaccia, S. Leva, M. Mussetta, and M. Aghaei. 2014. “Light Unmanned Aerial Vehicles (UAVs) for Cooperative Inspection of PV Plants.” IEEE Journal of Photovoltaics 4 (4): 1107–1113. doi:10.1109/JPHOTOV.2014.2323714.
  • Quiroz, R. (2015). Remote Sensing As a Monitoring Tool for Cropping Area Determination in Smallholder Agriculture in Tanzania and Uganda. Retrieved from https://cgspace.cgiar.org/handle/10568/69110
  • Ramasamy, S., R. Sabatini, A. Gardi, and J. Liu. 2016. “LIDAR Obstacle Warning and Avoidance System for Unmanned Aerial Vehicle Sense-and-Avoid.”  Aerospace Science and Technology 55: 344–358. doi:10.1016/j.ast.2016.05.020. Retrieved from: http://www.sciencedirect.com/science/article/pii/S1270963816301900.
  • Richards, J. A., and X. Jia. 2006. Remote Sensing Digital Image Analysis: An Introduction. 4th ed. Berlin: Springer.
  • Riggs, G. A., D. K. Hall, and V. V. Salomonson. 1994. “A Snow Index for the Landsat Thematic Mapper and Moderate Resolution Imaging Spectroradiometer.”  In Geoscience and Remote Sensing Symposium, 1994. IGARSS ’94. International Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation 4:1942–1944. doi:10.1109/IGARSS.1994.399618.
  • Rokhmana, C. A. 2015. “The Potential of UAV-based Remote Sensing for Supporting Precision Agriculture in Indonesia.” Procedia Environmental Sciences 24: 245–253. doi:10.1016/j.proenv.2015.03.032.
  • Rondeaux, G., M. Steven, and F. Baret. 1996. “Optimization of Soil-Adjusted Vegetation Indices.” Remote Sensing of Environment 55 (2): 95–107. doi:10.1016/0034-4257(95)00186-7.
  • Rouse, J. W. JR, R. H. Haas, J. A. Schell, and D. W. Deering. 1974. “Monitoring Vegetation Systems in the Great Plains with Erts.” NASA Special Publication 351: 309.
  • Saari, H., I. Pellikka, L. Pesonen, S. Tuominen, J. Heikkilä, C. Holmlund, … T. Antila. 2011. “Unmanned Aerial Vehicle (UAV) Operated Spectral Camera System for Forest and Agriculture Applications.” In Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII 8174: 81740H–81740H–15. doi:10.1117/12.897585.
  • Salamí, E., C. Barrado, and E. Pastor. 2014. “UAV Flight Experiments Applied to the Remote Sensing of Vegetated Areas.” Remote Sensing 6 (11): 11051–11081. doi:10.3390/rs61111051.
  • Siebert, S., and J. Teizer. 2014. “Mobile 3D Mapping for Surveying Earthwork Projects Using an Unmanned Aerial Vehicle (UAV) System.” Automation in Construction 41: 1–14. doi:10.1016/j.autcon.2014.01.004.
  • Simelli, I., and A. Tsagaris (2015). The Use of Unmanned Aerial Systems (UAS) in Agriculture. Presented at the 7th International Conference on Information and Communication Technologies in Agriculture, Food and Environment (HAICTA 2015), Kavala, Greece.
  • Sullivan, J. M. 2006. “Evolution or Revolution? The Rise of UAVs.” IEEE Technology and Society Magazine 25 (3): 43–49. doi:10.1109/MTAS.2006.1700021.
  • Suomalainen, J., N. Anders, S. Iqbal, G. Roerink, J. Franke, P. Wenting, … L. Kooistra. 2014. “A Lightweight Hyperspectral Mapping System and Photogrammetric Processing Chain for Unmanned Aerial Vehicles.” Remote Sensing 6 (11): 11013–11030. doi:10.3390/rs61111013.
  • Thenkabail, P. S., R. B. Smith, and E. De Pauw. 2000. “Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics.” Remote Sensing of Environment 71 (2): 158–182. doi:10.1016/S0034-4257(99)00067-X.
  • Thiel, C., and C. Schmullius. 2016. “Comparison of UAV Photograph-Based and Airborne LiDAR-Based Point Clouds Over Forest from a Forestry Application Perspective.” International Journal of Remote Sensing 0 (0): 1–16. doi:10.1080/01431161.2016.1225181.
  • Torres-Sánchez, J., F. López-Granados, and J. M. Peña. 2015. “An Automatic Object-Based Method for Optimal Thresholding in UAV Images: Application for Vegetation Detection in Herbaceous Crops.” Computers and Electronics in Agriculture 114: 43–52. doi:10.1016/j.compag.2015.03.019.
  • Torres-Sánchez, J., J. M. Peña, A. I. De Castro, and F. López-Granados. 2014. “Multi-Temporal Mapping of the Vegetation Fraction in Early-Season Wheat Fields Using Images from UAV.” Computers and Electronics in Agriculture 103: 104–113. doi:10.1016/j.compag.2014.02.009.
  • Tucker, C. J. 1979. “Red and Photographic Infrared Linear Combinations for Monitoring Vegetation.” Remote Sensing of Environment 8 (2): 127–150. doi:10.1016/0034-4257(79)90013-0.
  • Turner, D., A. Lucieer, and C. Watson (2011). Development of an Unmanned Aerial Vehicle (UAV) for Hyper Resolution Vineyard Mapping Based on Visible, Multispectral, and Thermal Imagery, In Proceedings of 34th International symposium on remote sensing of environment (p. 4).
  • Turner, D., A. Lucieer, and C. Watson. 2012. “An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds.” Remote Sensing 4 (12): 1392–1410. doi:10.3390/rs4051392.
  • Turner, W., S. Spector, N. Gardiner, M. Fladeland, E. Sterling, and M. Steininger. 2003. “Remote Sensing for Biodiversity Science and Conservation.” Trends in Ecology & Evolution 18 (6): 306–314. doi:10.1016/S0169-5347(03)00070-3.
  • Uto, K., H. Seki, G. Saito, and Y. Kosugi. 2013. “Characterization of Rice Paddies by a UAV-Mounted Miniature Hyperspectral Sensor System.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 6 (2): 851–860. doi:10.1109/JSTARS.2013.2250921.
  • Wagner, M. 2015. Unmanned Aerial Vehicles (SSRNScholarly Paper No. ID 2584652). Rochester, NY: Social Science Research Network. Retrieved from. http://papers.ssrn.com/abstract=2584652.
  • Wallace, L. (2013). Assessing the Stability of Canopy Maps Produced from UAV-LiDAR Data. In 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS (pp. 3879–3882). 10.1109/IGARSS.2013.6723679
  • Wallace, L., A. Lucieer, Z. Malenovský, D. Turner, and P. Vopěnka. 2016. “Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds.” Forests 7 (3): 62. doi:10.3390/f7030062.
  • Wallace, L., A. Lucieer, C. Watson, and D. Turner. 2012. “Development of a UAV-LiDAR System with Application to Forest Inventory.” Remote Sensing 4 (6): 1519–1543. doi:10.3390/rs4061519.
  • Wallace, L., A. Lucieer, and C. S. Watson. 2014. “Evaluating Tree Detection and Segmentation Routines on Very High Resolution UAV LiDAR Data.” IEEE Transactions on Geoscience and Remote Sensing 52 (12): 7619–7628. doi:10.1109/TGRS.2014.2315649.
  • Wallace, L. O., A. Lucieer, D. Turner, and C. S. Watson (2011). Error Assessment and Mitigation for Hyper-Temporal UAV-Borne LiDAR Surveys of Forest Inventory. Presented at the SilviLaser 2011, Hobart, Tasmania. Retrieved from http://events.cdesign.com.au/ei/viewpdf.esp?id=297&file=P:/Eventwin/docs/pdf/silvi2011Abstract00033.pdf
  • Ward, S., J. Hensler, B. Alsalam, and L. F. Gonzalez (2016). Autonomous UAVs Wildlife Detection Using Thermal Imaging, Predictive Navigation and Computer Vision. In Australian Research Centre for Aerospace Automation; School of Electrical Engineering & Computer Science; Institute for Future Environments; Science & Engineering Faculty. Yellowstone Conference Center, Big Sky, Montana. Retrieved from http://eprints.qut.edu.au/92309/
  • Watts, A. C., V. G. Ambrosia, and E. A. Hinkley. 2012. “Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use.” Remote Sensing 4 (6): 1671–1692. doi:10.3390/rs4061671.
  • Wehrhan, M., P. Rauneker, and M. Sommer. 2016. “UAV-Based Estimation of Carbon Exports from Heterogeneous Soil Landscapes—A Case Study from the CarboZALF Experimental Area.” Sensors 16 (2): 255. doi:10.3390/s16020255.
  • Woebbecke, D. M., G. E. Meyer, K. Von Bargen, and D. A. Mortensen (1995). Color Indices for Weed Identification under Various Soil, Residue, and Lighting Conditions. Transactions of the ASAE (USA). Retrieved from http://agris.fao.org/agris-search/search.do?recordID=US9561468
  • Xu, H. 2006. “Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery.” International Journal of Remote Sensing 27 (14): 3025–3033. doi:10.1080/01431160600589179.
  • Zarco-Tejada, P. J., A. Berjón, R. López-Lozano, J. R. Miller, P. Martín, V. Cachorro, … A. De Frutos. 2005. “Assessing Vineyard Condition with Hyperspectral Indices: Leaf and Canopy Reflectance Simulation in a Row-Structured Discontinuous Canopy.” Remote Sensing of Environment 99 (3): 271–287. doi:10.1016/j.rse.2005.09.002.
  • Zarco-Tejada, P. J., V. González-Dugo, and J. A. Berni. 2012. “Fluorescence, Temperature and Narrow-Band Indices Acquired from a UAV Platform for Water Stress Detection Using a Micro-Hyperspectral Imager and a Thermal Camera.” Remote Sensing of Environment 117: 322–337. doi:10.1016/j.rse.2011.10.007.
  • Zhang, C., and J. M. Kovacs. 2012. “The Application of Small Unmanned Aerial Systems for Precision Agriculture: A Review.” Precision Agriculture 13 (6): 693–712. doi:10.1007/s11119-012-9274-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.