398
Views
13
CrossRef citations to date
0
Altmetric
Research Article

The assessment of different vegetation indices for spatial disaggregating of thermal imagery over the humid agricultural region

, , , , & ORCID Icon
Pages 1907-1926 | Received 06 May 2019, Accepted 23 Sep 2019, Published online: 17 Oct 2019

References

  • Agam, N., W. P. Kustas, M. C. Anderson, F. Li, and P. D. Colaizzi. 2007a. “Utility of Thermal Sharpening over Texas High Plains Irrigated Agricultural Fields.” Journal of Geophysical Research: Atmospheres 112: D19. doi:10.1029/2007JD008407.
  • Agam, N., W. P. Kustas, M. C. Anderson, F. Li, and C. M. U. Neale. 2007b. “A Vegetation Index Based Technique for Spatial Sharpening of Thermal Imagery.” Remote Sensing of Environment 107 (4): 545–558. doi:10.1016/j.rse.2006.10.006.
  • Agam, N., W. P. Kustas, M. C. Anderson, F. Li, and P. D. Colaizzi. 2008. “Utility of Thermal Image Sharpening for Monitoring Field-scale Evapotranspiration over Rainfed and Irrigated Agricultural Regions.” Geophysical Research Letters 35: 2. doi:10.1029/2007GL032195.
  • Amazirh, A., O. Merlin, and S. Er-Raki. 2019. “Including Sentinel-1 Radar Data to Improve the Disaggregation of MODIS Land Surface Temperature Data.” ISPRS Journal of Photogrammetry and Remote Sensing 150: 11–26. doi:10.1016/j.isprsjprs.2019.02.004.
  • Anderson, M. C., R. G. Allen, A. Morse, and W. P. Kustas. 2012. “Use of Landsat Thermal Imagery in Monitoring Evapotranspiration and Managing Water Resources.” Remote Sensing of Environment 122: 50–65. doi:10.1016/j.rse.2011.08.025.
  • Bayala, M. I., and R. E. Rivas. 2014. “Enhanced Sharpening Procedures on Edge Difference and Water Stress Index Basis over Heterogeneous Landscape of Sub-humid Region.” The Egyptian Journal of Remote Sensing and Space Science 17 (1): 17–27. doi:10.1016/j.ejrs.2014.05.002.
  • Bisquert, M., J. M. Sánchez, R. López-Urrea, and V. Caselles. 2016. “Estimating High Resolution Evapotranspiration from Disaggregated Thermal Images.” Remote Sensing of Environment 187: 423–433. doi:10.1016/j.rse.2016.10.049.
  • Bonafoni, S. 2016. “Downscaling of Landsat and MODIS Land Surface Temperature over the Heterogeneous Urban Area of Milan.” Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal Of 9 (5): 2019–2027. doi:10.1109/JSTARS.2016.2514367.
  • Chen, X., L. Wentao, J. Chen, Y. Rao, and Y. Yamaguchi. 2014. “A Combination of TsHARP and Thin Plate Spline Interpolation for Spatial Sharpening of Thermal Imagery.” Remote Sensing 6 (4): 2845–2863. doi:10.3390/rs6042845.
  • Djamai, N., R. Magagi, K. Goita, O. Merlin, Y. Kerr, and A. Walker. 2015. “Disaggregation of SMOS Soil Moisture over the Canadian Prairies.” Remote Sensing of Environment 170: 255–268. doi:10.1016/j.rse.2015.09.013.
  • Dominguez, A., J. Kleissl, J. C. Luvall, and D. L. Rickman. 2011. “High-resolution Urban Thermal Sharpener (HUTS).” Remote Sensing of Environment 115 (7): 1772–1780. doi:10.1016/j.rse.2011.03.008.
  • Duan, S. B., and Z. L. Li. 2016. “Spatial Downscaling of MODIS Land Surface Temperatures Using Geographically Weighted Regression: Case Study in Northern China.” IEEE Transactions on Geoscience and Remote Sensing 54 (11): 6458–6469. doi:10.1109/TGRS.2016.2585198.
  • Ebrahimy, H., and M. Azadbakht. 2019. “Downscaling MODIS Land Surface Temperature over a Heterogeneous Area: An Investigation of Machine Learning Techniques, Feature Selection, and Impacts of Mixed Pixels.” Computers & Geosciences 124: 93–102. doi:10.1016/j.cageo.2019.01.004.
  • Eswar, R., M. Sekhar, and B. K. Bhattacharya. 2016. “Disaggregation of LST over India: Comparative Analysis of Different Vegetation Indices.” International Journal of Remote Sensing 37 (5): 1035–1054. doi:10.1080/01431161.2016.1145363.
  • Gao, F., W. Kustas, and M. Anderson. 2012. “A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land.” Remote Sensing 4 (12): 3287–3319. doi:10.3390/rs4113287.
  • Gomis-Cebolla, J., J. C. Jimenez, and J. A. Sobrino. 2018. “LST Retrieval Algorithm Adapted to the Amazon Evergreen Forests Using MODIS Data.” Remote Sensing of Environment 204: 401–411. doi:10.1016/j.rse.2017.10.015.
  • Huang, C., X. Li, and L. Lu. 2008. “Retrieving Soil Temperature Profile by Assimilating MODIS LST Products with Ensemble Kalman Filter.” Remote Sensing of Environment 112 (4): 1320–1336. doi:10.1016/j.rse.2007.03.028.
  • Hutengs, C., and M. Vohland. 2016. “Downscaling Land Surface Temperatures at Regional Scales with Random Forest Regression.” Remote Sensing of Environment 178: 127–141. doi:10.1016/j.rse.2016.03.006.
  • Immerzeel, W. W., M. M. Rutten, and P. Droogers. 2009. “Spatial Downscaling of TRMM Precipitation Using Vegetative Response on the Iberian Peninsula.” Remote Sensing of Environment 113 (2): 362–370. doi:10.1016/j.rse.2008.10.004.
  • Jacobs, J. M., B. P. Mohanty, E.-C. Hsu, and D. Miller. 2004. “SMEX02: Field Scale Variability, Time Stability and Similarity of Soil Moisture.” Remote Sensing of Environment 92 (4): 436–446. doi:10.1016/j.rse.2004.02.017.
  • Kustas, W. P., and J. M. Norman. 2000. “A Two-Source Energy Balance Approach Using Directional Radiometric Temperature Observations for Sparse Canopy Covered Surfaces.” Agronomy Journal 92 (5): 847–854. doi:10.2134/agronj2000.925847x.
  • Kustas, W. P., J. M. Norman, M. C. Anderson, and A. N. French. 2003. “Estimating Subpixel Surface Temperatures and Energy Fluxes from the Vegetation Index–Radiometric Temperature Relationship.” Remote Sensing of Environment 85 (4): 429–440. doi:10.1016/S0034-4257(03)00036-1.
  • Li, F., T. J. Jackson, W. P. Kustas, T. J. Schmugge, A. N. French, M. H. Cosh, and R. Bindlish. 2004. “Deriving Land Surface Temperature from Landsat 5 and 7 during SMEX02/SMACEX.” Remote Sensing of Environment 92 (4): 521–534. doi:10.1016/j.rse.2004.02.018.
  • Li, X., C. Zhang, W. Li, R. O. Anyah, and J. Tian. 2019. “Exploring the Trend, Prediction and Driving Forces of Aerosols Using Satellite and Ground Data, and Implications for Climate Change Mitigation.” Journal of Cleaner Production 223: 238–251. doi:10.1016/j.jclepro.2019.03.121.
  • Li, Z.-L., B.-H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino. 2013. “Satellite-derived Land Surface Temperature: Current Status and Perspectives.” Remote Sensing of Environment 131: 14–37. doi:10.1016/j.rse.2012.12.008.
  • Liu, K., H. Su, X. Li, S. Chen, R. Zhang, W. Wang, L. Yang, H. Liang, and Y. Yang. 2018a. “A Thermal Disaggregation Model Based on Trapezoid Interpolation.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, no. 99: 1–13. doi:10.1109/JSTARS.2018.2790002.
  • Liu, K., H. Su, X. Li, S. Chen, R. Zhang, W. Wang, L. Yang, H. Liang, and Y. Yang. 2018b. “A Thermal Disaggregation Model Based on Trapezoid Interpolation.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11 (3): 808–820. doi:10.1109/JSTARS.2018.2790002.
  • Liu, K., S. Hongbo, J. Tian, L. Xueke, W. Wang, L. Yang, and H. Liang. 2018. “Assessing a Scheme of Spatial-temporal Thermal Remote-sensing Sharpening for Estimating Regional Evapotranspiration.” International Journal of Remote Sensing 39 (10): 3111–3137. doi:10.1080/01431161.2018.1434326.
  • Liu, K., S. Hongbo, and L. Xueke. 2016. “Estimating High-Resolution Urban Surface Temperature Using a Hyperspectral Thermal Mixing (HTM) Approach.” Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal Of 9 (4): 804–815. doi:10.1109/JSTARS.2015.2459375.
  • Long, D., and V. P. Singh. 2012. “A Two-source Trapezoid Model for Evapotranspiration (TTME) from Satellite Imagery.” Remote Sensing of Environment 121: 370–388. doi:10.1016/j.rse.2012.02.015.
  • Lopatin, J., K. Dolos, H. J. Hernández, M. Galleguillos, and F. E. Fassnacht. 2016. “Comparing Generalized Linear Models and Random Forest to Model Vascular Plant Species Richness Using LiDAR Data in a Natural Forest in Central Chile.” Remote Sensing of Environment 173: 200–210. doi:10.1016/j.rse.2015.11.029.
  • Merlin, O., B. Duchemin, O. Hagolle, F. Jacob, B. Coudert, G. Chehbouni, G. Dedieu, J. Garatuza, and Y. Kerr. 2010. “Disaggregation of MODIS Surface Temperature over an Agricultural Area Using a Time Series of Formosat-2 Images.” Remote Sensing of Environment 114 (11): 2500–2512. doi:10.1016/j.rse.2010.05.025.
  • Merlin, O., F. Jacob, J.-P. Wigneron, J. Walker, and G. Chehbouni. 2012. “Multidimensional Disaggregation of Land Surface Temperature Using High-resolution Red, Near-infrared, Shortwave-infrared, and microwave-L Bands.” IEEE Transactions on Geoscience and Remote Sensing 50 (5): 1864–1880. doi:10.1109/TGRS.2011.2169802.
  • Moosavi, V., A. Talebi, M. H. Mokhtari, S. R. F. Shamsi, and Y. Niazi. 2015. “A Wavelet-artificial Intelligence Fusion Approach (WAIFA) for Blending Landsat and MODIS Surface Temperature.” Remote Sensing of Environment 169: 243–254. doi:10.1016/j.rse.2015.08.015.
  • Norman, J. M., W. P. Kustas, and K. S. Humes. 1995. “Source Approach for Estimating Soil and Vegetation Energy Fluxes in Observations of Directional Radiometric Surface Temperature.” Agricultural and Forest Meteorology 77 (3): 263–293. doi:10.1016/0168-1923(95)02265-Y.
  • Pal, M. 2005. “Random Forest Classifier for Remote Sensing Classification.” International Journal of Remote Sensing 26 (1): 217–222. doi:10.1080/01431160412331269698.
  • Pan, X., X. Zhu, Y. Yang, C. Cao, X. Zhang, and L. Shan. 2018. “Applicability of Downscaling Land Surface Temperature by Using Normalized Difference Sand Index.” Scientific Reports 8 (1): 9530. doi:10.1038/s41598-018-27905-0.
  • Patel, N. R., R. Anapashsha, S. Kumar, S. K. Saha, and V. K. Dadhwal. 2009. “Assessing Potential of MODIS Derived Temperature/vegetation Condition Index (TVDI) to Infer Soil Moisture Status.” International Journal of Remote Sensing 30 (1): 23–39. doi:10.1080/01431160802108497.
  • Quan, J., W. Zhan, T. Ma, Y. Du, Z. Guo, and B. Qin. 2018. “An Integrated Model for Generating Hourly Landsat-like Land Surface Temperatures over Heterogeneous Landscapes.” Remote Sensing of Environment 206: 403–423. doi:10.1016/j.rse.2017.12.003.
  • Rahimzadeh-Bajgiran, P., K. Omasa, and Y. Shimizu. 2012. “Comparative Evaluation of the Vegetation Dryness Index (VDI), the Temperature Vegetation Dryness Index (TVDI) and the Improved TVDI (itvdi) for Water Stress Detection in Semi-arid Regions of Iran.” ISPRS Journal of Photogrammetry and Remote Sensing 68: 1–12. doi:10.1016/j.isprsjprs.2011.10.009.
  • Reichstein, M., G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, and P. Prabhat. 2019. “Deep Learning and Process Understanding for Data-driven Earth System Science.” Nature 566 (7743): 195–204. doi:10.1038/s41586-019-0912-1.
  • Sandholt, I., K. Rasmussen, and J. Andersen. 2002. “A Simple Interpretation of the Surface Temperature/vegetation Index Space for Assessment of Surface Moisture Status.” Remote Sensing of Environment 79 (2): 213–224. doi:10.1016/S0034-4257(01)00274-7.
  • Semmens, K. A., M. C. Anderson, W. P. Kustas, F. Gao, J. G. Alfieri, L. McKee, J. H. Prueger, et al. 2016. “Monitoring Daily Evapotranspiration over Two California Vineyards Using Landsat 8 in a Multi-sensor Data Fusion Approach.” Remote Sensing of Environment 185 :155–170. doi:10.1016/j.rse.2015.10.025.
  • Shen, H., L. Huang, L. Zhang, P. Wu, and C. Zeng. 2016. “Long-term and Fine-scale Satellite Monitoring of the Urban Heat Island Effect by the Fusion of Multi-temporal and Multi-sensor Remote Sensed Data: A 26-year Case Study of the City of Wuhan in China.” Remote Sensing of Environment 172: 109–125. doi:10.1016/j.rse.2015.11.005.
  • Su, H., J. Tian, S. Chen, R. Zhang, Y. Rong, Y. Yang, X. Tang, and J. Garcia. 2011. “A New Algorithm to Automatically Determine the Boundary of the Scatter Plot in the Triangle Method for Evapotranspiration Retrieval.” Paper presented at the 2011 IEEE International Geoscience and Remote Sensing Symposium, Sendai, Japan, July 24–29.
  • Tang, R., Z.-L. Li, and B. Tang. 2010. “An Application of the Ts–VI Triangle Method with Enhanced Edges Determination for Evapotranspiration Estimation from MODIS Data in Arid and Semi-arid Regions: Implementation and Validation.” Remote Sensing of Environment 114 (3): 540–551. doi:10.1016/j.rse.2009.10.012.
  • Tran, H., D. Uchihama, S. Ochi, and Y. Yasuoka. 2006. “Assessment with Satellite Data of the Urban Heat Island Effects in Asian Mega Cities.” International Journal of Applied Earth Observation and Geoinformation 8 (1): 34–48. doi:10.1016/j.jag.2005.05.003.
  • Weng, Q., P. Fu, and F. Gao. 2014. “Generating Daily Land Surface Temperature at Landsat Resolution by Fusing Landsat and MODIS Data.” Remote Sensing of Environment 145: 55–67. doi:10.1016/j.rse.2014.02.003.
  • Wood, E. F., J. K. Roundy, T. J. Troy, L. P. H. van Beek, F. P. Marc, E. B. Bierkens, A. de Roo, et al. 2011. “Hyperresolution Global Land Surface Modeling: Meeting a Grand Challenge for Monitoring Earth’s Terrestrial Water.” Water Resources Research 47 (5): n/a-n/a. doi:10.1029/2010WR010090.
  • Wood, S. N. 2003. “Thin Plate Regression Splines.” Journal of the Royal Statistical Society: Series B (statistical Methodology) 65 (1): 95–114. doi:10.1111/1467-9868.00374.
  • Wu, B., N. Yan, W. G. M. Jun Xiong, W. Z. Bastiaanssen, and A. Stein. 2012. “Validation of ETWatch Using Field Measurements at Diverse Landscapes: A Case Study in Hai Basin of China.” Journal of Hydrology 436–437: 67–80. doi:10.1016/j.jhydrol.2012.02.043.
  • Wu, H., and W. Li. 2019. “Downscaling Land Surface Temperatures Using a Random Forest Regression Model with Multitype Predictor Variables.” IEEE Access 7: 21904–21916. doi:10.1109/ACCESS.2019.2896241.
  • Wu, P., H. Shen, L. Zhang, and F.-M. Göttsche. 2015. “Integrated Fusion of Multi-scale Polar-orbiting and Geostationary Satellite Observations for the Mapping of High Spatial and Temporal Resolution Land Surface Temperature.” Remote Sensing of Environment 156: 169–181. doi:10.1016/j.rse.2014.09.013.
  • Xia, H., Y. Chen, Y. Li, and J. Quan. 2019. “Combining Kernel-driven and Fusion-based Methods to Generate Daily High-spatial-resolution Land Surface Temperatures.” Remote Sensing of Environment 224: 259–274. doi:10.1016/j.rse.2019.02.006.
  • Yang, Y., H. Su, R. Zhang, J. Tian, and L. Li. 2015. “An Enhanced Two-source Evapotranspiration Model for Land (ETEML): Algorithm and Evaluation.” Remote Sensing of Environment 168: 54–65. doi:10.1016/j.rse.2015.06.020.
  • Zhan, W., Y. Chen, J. Zhou, J. Wang, W. Liu, J. Voogt, X. Zhu, J. Quan, and J. Li. 2013. “Disaggregation of Remotely Sensed Land Surface Temperature: Literature Survey, Taxonomy, Issues, and Caveats.” Remote Sensing of Environment 131: 119–139. doi:10.1016/j.rse.2012.12.014.
  • Zhang, D., R. Tang, B.-H. Tang, H. Wu, and Z.-L. Li. 2015. “A Simple Method for Soil Moisture Determination from LST–VI Feature Space Using Nonlinear Interpolation Based on Thermal Infrared Remotely Sensed Data.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8 (2): 638–648. doi:10.1109/JSTARS.2014.2371135.
  • Zhang, X., H. Zhao, and J. Yang. 2019. “Spatial Downscaling of Land Surface Temperature in Combination with TVDI and Elevation.” International Journal of Remote Sensing 40 (5–6): 1875–1886. doi:10.1080/01431161.2018.1489164.
  • Zhou, D., S. Zhao, S. Liu, L. Zhang, and C. Zhu. 2014. “Surface Urban Heat Island in China’s 32 Major Cities: Spatial Patterns and Drivers.” Remote Sensing of Environment 152: 51–61. doi:10.1016/j.rse.2014.05.017.
  • Zhu, W., S. Jia, and A. Lv. 2017. “A Time Domain Solution of the Modified Temperature Vegetation Dryness Index (MTVDI) for Continuous Soil Moisture Monitoring.” Remote Sensing of Environment 200: 1–17. doi:10.1016/j.rse.2017.07.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.