501
Views
15
CrossRef citations to date
0
Altmetric
Research Article

ISAR imaging enhancement: exploiting deep convolutional neural network for signal reconstruction

ORCID Icon, , &
Pages 9447-9468 | Received 31 Mar 2020, Accepted 26 Jun 2020, Published online: 28 Oct 2020

References

  • Alom, M. Z., M. Hasan, C. Yakopcic, T. M. Taha, and V. K. Asari. 2018. “Residual Convolutional Neural Network Based on U-Net (R2u-net) for Medical Image Segmentation.” arXiv preprint arXiv:1802.06955.
  • Chen, V. C., and H. Ling. 2002. Time-Frequency Transformsjk, Aazz for Radar Imaging and Signal Analysis. Norwood, MA, USA: Artech House.
  • Donoho, D. L. 2006. “Compressed Sensing.” IEEE Transactions on Information Theory 52 (4): 1289–1306. doi:10.1109/TIT.2006.871582.
  • Dozat, T. 2016. “Incorporating Nesterov Momentum Into Adam.” Accessed 23 October 2019. http://cs229.stanford.edu/proj2015/054_report.pdf
  • Gao, J. K., B. Deng, Y. L. Qin, H. Q. Wang, and X. Li. 2018. “Enhanced Radar Imaging Using a Complex-valued Convolutional Neural Network.” IEEE Geoscience and Remote Sensing Letters 16 (1): 35–39. doi:10.1109/LGRS.2018.2866567.
  • Gonzalez-Partida, J. T., M. Burgos-Garcia, B. P. Dorta-Naranjo, and F. Perez-Martinez. 2007. “Stagger Procedure to Extend the Frequency Modulated Interrupted Continuous Wave Technique to High Resolution Radars.” IET Radar, Sonar and Navigation 1 (4): 281–288. doi:10.1049/iet-rsn:20060033.
  • Herman, M. A., and T. Strohmer. 2009. “High-resolution Radar via Compressed Sensing.” IEEE Transactions on Signal Processing 57 (6): 2275–2284. doi:10.1109/TSP.2009.2014277.
  • Hong, L., F. Dai, and H. Liu. 2013. “Sparse Doppler-only Snapshot Imaging for Space Debris.” Signal Processing 93 (4): 731–741. doi:10.1016/j.sigpro.2012.09.015.
  • Hou, B., G. Zhang, Z. W. Li, and L. C. Jiao. 2017. “Sparse Coding-inspired High-resolution ISAR Imaging Using Multistage Compressive Sensing.” IEEE Transactions on Aerospace and Electronic Systems 53 (1): 26–40. doi:10.1109/TAES.2017.2649161.
  • Hu, C. Y., Z. Li, L. Wang, J. Gao, and O. Loffeld 2019. “Inverse Synthetic Aperture Radar Imaging Using a Deep ADMM Network.” In Proceedings of the International Radar Symposium (IRS), Ulm, Germany, 1–9. June 26-28. doi: 10.23919/IRS.2019.8768138.
  • Hui, B. I., and B. I. Guoan. 2019. “A Novel Iterative Soft Thresholding Algorithm for L_1 Regularization Based SAR Image Enhancement.” Science China 62 (4): 212–214. doi:10.1007/s11432-018-9662-y.
  • Hyun, C. M., H. P. Kim, S. M. Lee, S. Lee, and J. K. Seo. 2018. “Deep Learning for Undersampled MRI Reconstruction.” Physics in Medicine and Biology 63 (13): 135007. doi:10.1088/1361-6560/aac71a.
  • Ioffe, S., and C. Szegedy. 2015. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.” arXiv preprint arXiv:1502.03167v3.
  • Jin, K. H., M. T. McCann, E. Froustey, and M. Unser. 2017. “Deep Convolutional Neural Network for Inverse Problems in Imaging.” IEEE Transaction on Image Processing 26 (9): 4509–4522. doi:10.1109/TIP.2017.2713099.
  • Lazarov, A., and C. Minchev. 2017. “ISAR Image Recognition Algorithm and Neural Network Implementation.” Cybernetics and Information Technologies 17 (4): 183–199. doi:10.1515/cait-2017-0048.
  • Li, S. D., W. F. Chen, W. J. Liu, J. Yang, and X. Y. Ma. 2017. “Fast 2D Super Resolution ISAR Imaging Method under Low Signal-to-noise Ratio.” IET Radar, Sonar and Navigation 11 (10): 1495–1504. doi:10.1049/iet-rsn.2017.0033.
  • Li, T. F., and Q. L. Zhang. 2016. “An Adaptive Sparse Subsampling Matrix Design Strategy for Compressive Sensing SAR.” IEEE International Conference on Digital Signal Processing. Beijing, China, 16-18 October. doi: 10.1109/ICDSP.2016.7868647.
  • Liu, Z. T., and Y. C. Jiang. 2019. “Shorebase-Shipborne Bistatic ISAR Robustness Analysis.” International Journal of Remote Sensing 40 (9): 3518–3542. doi:10.1080/01431161.2018.1547454.
  • Mason, E., B. Yonel, and B. Yazici. “Deep Learning for SAR Image Formation.” Algorithms for Synthetic Aperture Radar Imagery XXIV Anaheim, California, United States, 9 April 2017. doi: 10.1117/12.2267831.
  • Ojeda, O. A. Y., and J. Grajal. 2006. “Atomic Decomposition Based Detector for Denoising in ISAR Imaging.” European Signal Processing Conference, Florence, Italy, 4-8 September. doi: 10.5281/zenodo.40097.
  • Palangi, H., R. Ward, and L. Deng. 2013. “Using Deep Stacking Network to Improve Structured Compressed Sensing with Multiple Measurement Vectors.” IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26-31 May. doi: 10.1109/ICASSP.2013.6638276.
  • Ronneberger, O., P. Fischer, and T. Brox. 2015. “U-Net: Convolutional Networks for Biomedical Image Segmentation.” Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Munich, Germany, 5-9 October. doi: 10.1007/978-3-319-24574-4_28.
  • Sachidananda, M., and D. S. Zrnic. 1986. “Recovery of Spectral Moments from Overlaid Echoes in a Doppler Weather Radar.” IEEE Transactions on Geoscience and Remote Sensing GE-24 (5): 751–764. doi:10.1109/TGRS.1986.289624.
  • Shao, H. D., H. K. Jiang, H. Z. Zhang, W. J. Duan, T. C. Liang, and S. P. Wu. 2018. “Rolling Bearing Fault Feature Learning Using Improved Convolutional Deep Belief Network with Compressed Sensing.” Mechanical Systems and Signal Processing 100: 743–765. doi:10.1016/j.ymssp.2017.08.002.
  • Shi, H. Y., S. X. Xia, and Y. Tian. 2018. “ISAR Imaging Based on Improved Phase Retrieval Algorithm.” Journal of Systems Engineering and Electronics 29 (2): 278–285. doi:10.21629/JSEE.2018.02.08.
  • Sun, S. B., and G. L. Liang. 2018. “ISAR Imaging of Complex Motion Targets Based on Radon Transform Cubic Chirplet Decomposition.” International Journal of Remote Sensing 39 (6): 1770–1781. doi:10.1080/01431161.2017.1415485.
  • Sutskever, I., J. Martens, G. Dahl, and G. Hinton. 2013. “On the Importance of Initialization and Momentum in Deep Learning.” Journal of Machine Learning Research 23 (3): 1139–1147. doi:10.1007/s00287-015-0911-z.
  • Tabassum, N., A. Vaccari, and S. Acton. 2017. “Speckle Removal and Change Preservation by Distance-Driven Anisotropic Diffusion of Synthetic Aperture Radar Temporal Stacks.” Digital Signal Processing 74: 43–55. doi:10.1016/j.dsp.2017.11.013.
  • Werness, S. A. S., W. G. Carrara, L. S. Joyce, and D. B. Franczak. 1990. “Moving Target Imaging Algorithm for SAR Data.” IEEE Transactions on Aerospace and Electronic Systems 26 (1): 57–67. doi:10.1109/7.53413.
  • Yang, T., H. Y. Shi, J. W. Guo, and M. X. Liu. 2020. “FMCW ISAR Autofocus Imaging Algorithm for High-speed Maneuvering Targets Based on Image Contrast-based Autofocus and Phase Retrieval.” IEEE Sensors Journal 20 (3): 1259–1267. doi:10.1109/JSEN.2019.2947559.
  • Zhang, S. L., F. Xi, S. Y. Chen, Y. D. Zhang, and Z. Liu. 2016. “Segment-sliding Reconstruction of Pulsed Radar Echoes with Sub-Nyquist Sampling.” Science China Information Sciences 59 (12): 122309. doi:10.1007/s11432-015-0602-9.
  • Zheng, J. B., H. W. Liu, G. S. Liao, T. Su, Z. Liu, and Q. H. Liu. 2016. “ISAR Imaging of Targets with Complex Motions Based on a Noise-Resistant Parameter Estimation Algorithm without Nonuniform Axis.” IEEE Sensors Journal 16 (8): 2509–2518. doi:10.1109/JSEN.2016.2516040.
  • Zhu, D., L. Wang, Y. Yu, Q. Tao, and Z. Zhu. 2009. “Robust ISAR Rangealignment via Minimizing the Entropy of the Average Range Profile.” IEEE Geoscience and Remote Sensing Letters 6 (2): 204–208. doi:10.1109/lgrs.2008.2010562.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.