424
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Utility and optimization of LANDSAT-derived burned area maps for southern California

ORCID Icon, &
Pages 486-505 | Received 22 Feb 2020, Accepted 04 Jul 2020, Published online: 18 Nov 2020

References

  • Allen, J. L., and B. Sorbel. 2008. “Assessing the Differenced Normalized Burn Ratio’s Ability to Map Burn Severity in the Boreal Forest and Tundra Ecosystems of Alaska’s National Parks.” International Journal of Wildland Fire 17 (4): 463–475. doi:10.1071/WF08034.
  • Alonso-Canas, Itziar, and Emilio Chuvieco. 2015. “Global burned area mapping from ENVISAT-MERIS and MODIS active fire data.” Remote Sensing of Environment 163: 140–152
  • Anaya, J. A., and E. Chuvieco. 2012. “Accuracy Assessment of Burned Area Products in the Orinoco Basin.” Photogrammetric Engineering and Remote Sensing 78 (1): 53–60. doi:10.14358/PERS.78.1.53.
  • Barbosa, P. M., J. M. C. Pereira, and J. M. Gregoire. 1998. “Compositing Criteria for Burned Area Assessment Using Multitemporal Low Resolution Satellite Data.” Remote Sensing of Environment 65: 38–49. doi:10.1016/S0034-4257(98)00016-9.
  • Bond, William J., and Jon E. Keeley. 2005. “Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems.” Trends in ecology & Evolution 20, 7 (2005): 387–394
  • Boschetti, L., D. Roy, and C. Justice. 2009. “International Global Burned Area Satellite Product Validation Protocol.” In CEOS-CalVal edited by Geographic Information Science Center of Excellence, South Dakota State University, USA, Part I—Production and Standardization of Validation Reference Data, 1–11. USA: Committee on Earth Observation Satellites. https://lpvs.gsfc.nasa.gov/PDF/BurnedAreaValidationProtocol.pdf
  • Boschetti, L., D. P. Roy, C. O. Justice, and M. L. Humber. 2015. “MODIS–Landsat Fusion for Large Area 30 M Burned Area Mapping.” Remote Sensing of Environment 161: 27–42. doi:10.1016/j.rse.2015.01.022.
  • California Department of Forestry and Fire Protection. 2019. “Fire and Resource Assessment Program, Historical Fire Perimeter Data.” Accessed October 10 2019. https://frap.fire.ca.gov/mapping/gis-data/
  • Chuvieco, E., F. Mouillot, G. R. van der Werf, J. San Miguel, M. Tanasse, N. Koutsias, M. García, et al. 2019. “Historical Background and Current Developments for Mapping Burned Area from Satellite Earth Observation.” Remote Sensing of Environment 225: 45–64. doi:10.1016/j.rse.2019.02.013.
  • Chuvieco, E., and M. P. Martín. 1994. “Global Fire Mapping and Fire Danger Estimation Using AVHRR Images.” Photogrammetric Engineering and Remote Sensing 60: 563–570.
  • Chuvieco, E., and R. G. Congalton. 1988. “Mapping and Inventory of Forest Fires from Digital Processing of TM Data.” Geocarto International 4: 41–53.
  • Congalton, R. G. 1991. “A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data.” Remote Sensing of Environment 37 (1): 35–46. doi:10.1016/0034-4257(91)90048-B.
  • De Santis, A., and E. Chuvieco. 2009. “GeoCBI: A Modified Version of the Composite Burn Index for the Initial Assessment of the Short-term Burn Severity from Remotely Sensed Data.” Remote Sensing of Environment 113 (3): 554–562. doi:10.1016/j.rse.2008.10.011.
  • Eckmann, T. C., D. A. Roberts, and C. J. Still. 2008. “Using Multiple Endmember Spectral Mixture Analysis to Retrieve Subpixel Fire Properties from MODIS.” Remote Sensing of Environment 112 (10): 3773–3783. doi:10.1016/j.rse.2008.05.008.
  • Epting, J., D. Verbyla, and B. Sorbel. 2005. “Evaluation of Remotely Sensed Indices for Assessing Burn Severity in Interior Alaska Using Landsat TM and ETM+.” Remote Sensing of Environment 96 (3–4): 328–339. doi:10.1016/j.rse.2005.03.002.
  • Fernández-García, V., M. Santamarta, A. Fernández-Manso, C. Quintano, E. Marcos, and L. Calvo. 2018. “Burn Severity Metrics in Fire-prone Pine Ecosystems along a Climatic Gradient Using Landsat Imagery.” Remote Sensing of Environment 206: 205–217. doi:10.1016/j.rse.2017.12.029.
  • Foody, G M. 2007. “Map comparison in GIS.” Progress in Physical Geography 31 (4): 439–445.
  • Fraser, R. H., Z. Li, and J. Cihlar. 2000. “Hotspot and NDVI Differencing Synergy (HANDS): A New Technique for Burned Area Mapping over Boreal Forest.” Remote Sensing of Environment 74 (3): 362–376. doi:10.1016/S0034-4257(00)00078-X.
  • García, M. L., and V. Caselles. 1991. “Mapping Burns and Natural Reforestation Using Thematic Mapper Data.” Geocarto International 6 (1): 31–37. doi:10.1080/10106049109354290.
  • Giglio, L., T. Loboda, D. P. Roy, B. Quayle, and C. O. Justice. 2009. “An Active-fire Based Burned Area Mapping Algorithm for the MODIS Sensor.” Remote Sensing of Environment 113: 408–420. doi:10.1016/j.rse.2008.10.006.
  • Gong, P., R. Pu, Z. Li, J. Scarborough, N. Clinton, and L. M. Levien. 2006. “An Integrated Approach to Wildland Fire Mapping of California, USA Using NOAA/AVHRR Data.” Photogrammetric Engineering and Remote Sensing 72: 139–150. doi:10.14358/PERS.72.2.139.
  • Goodwin, N. R., and L. J. Collett. 2014. “Development of an Automated Method for Mapping Fire History Captured in Landsat TM and ETM+ Time Series across Queensland, Australia.” Remote Sensing of Environment 148: 206–221. doi:10.1016/j.rse.2014.03.021.
  • Harris, S., S. Veraverbeke, and S. Hook. 2011. “Evaluating Spectral Indices for Assessing Fire Severity in Chaparral Ecosystems (Southern California) Using MODIS/ASTER (MASTER) Airborne Simulator Data.” Remote Sensing 3 (11): 2403–2419. doi:10.3390/rs3112403.
  • Holden, Z. A., A. M. S. Smith, P. Morgan, M. G. Rollins, and P. E. Gessler. 2005. “Evaluation of Novel Thermally Enhanced Spectral Indices for Mapping Fire Perimeters and Comparisons with Fire Atlas Data.” International Journal of Remote Sensing 26 (21): 4801–4808. doi:10.1080/01431160500239008.
  • Key, Carl H., and Nathan C. Benson. “Landscape assessment (LA).” In: Lutes, Duncan C.; Keane, Robert E.; Caratti, John F.; Key, Carl H.; Benson, Nathan C.; Sutherland, Steve; Gangi, Larry J. 2006. FIREMON: Fire effects monitoring and inventory system. Gen. Tech. Rep. RMRS-GTR-164-CD. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. LA-1-55 164 (2006).
  • Kenneth, B. C., J. Chris Winne, R. L. Redmond, D. W. Opitz, and M. V. Mangrich. 2005. “Classifying and Mapping Wildfire Severity: A Comparison of Methods.” Photogrammetric Engineering and Remote Sensing 71 (11): 1311–1320.
  • Key, Carl H., and Nate C. Benson. 1999. “Measuring and remote sensing of burn severity.” In Proceedings joint fire science conference and workshop 2: 284. University of Idaho and International Association of Wildland Fire Moscow
  • Kolden, C. A., A. M. Smith, and J. T. Abatzoglou. 2015. “Limitations and Utilisation of Monitoring Trends in Burn Severity Products for Assessing Wildfire Severity in the USA.” International Journal of Wildland Fire 24 (7): 1023–1028. doi:10.1071/WF15082.
  • Kolden, C. A., J. A. Lutz, C. H. Key, J. T. Kane, and J. W. van Wagtendonk. 2012. “Mapped versus Actual Burned Area within Wildfire Perimeters: Characterizing the Unburned.” Forest Ecology and Management 286: 38–47. doi:10.1016/j.foreco.2012.08.020.
  • Kolden, C. A., and P. J. Weisberg. 2007. “Assessing Accuracy of Manually-mapped Wildfire Perimeters in Topographically Dissected Areas.” Fire Ecology 3: 22–31. doi:10.4996/fireecology.0301022.
  • Kolden, Crystal A., and Peter J. Weisberg. 2007. “Assessing accuracy of manually-mapped wildfire perimeters in topographically dissected areas.” Fire Ecology 3 (1): 22–31
  • Koutsias, N., M. Pleniou, G. Mallinis, F. Nioti, and N. I. Sifakis. 2013. “A Rule-based Semi-automatic Method to Map Burned Areas: Exploring the USGS Historical Landsat Archives to Reconstruct Recent Fire History.” International Journal of Remote Sensing 34 (20): 7049–7068. doi:10.1080/01431161.2013.816452.
  • Lees, B. G., and K. Ritman. 1991. “Decision-tree and Rule-induction Approach to Integration of Remotely Sensed and GIS Data in Mapping Vegetation in Disturbed or Hilly Environments.” Environmental Management 15 (6): 823–831. doi:10.1007/BF02394820.
  • Loboda, T., K. J. O’Neal, and I. Csiszar. 2007. “Regionally Adaptable dNBR-based Algorithm for Burned Area Mapping from MODIS Data.” Remote Sensing of Environment 109 (4): 429–442. doi:10.1016/j.rse.2007.01.017.
  • Masek, J. G., E. F. Vermote, N. E. Saleous, R. Wolfe, F. G. Hall, K. F. Huemmrich, F. Gao, J. Kutler, and T. Lim. 2006. “A Landsat Surface Reflectance Dataset for North America, 1990–2000.” IEEE Geoscience and Remote Sensing Letters 3 (1): 68–72. doi:10.1109/LGRS.2005.857030.
  • Masek, J. G., S. N. Goward, R. E. Kennedy, W. B. Cohen, G. G. Moisen, K. Schleeweis, and C. Huang. 2013. “United States Forest Disturbance Trends Observed Using Landsat Time Series.” Ecosystems 16 (6): 1087–1104. doi:10.1007/s10021-013-9669-9.
  • Miller, J. D., and A. E. Thode. 2007. “Quantifying Burn Severity in a Heterogeneous Landscape with a Relative Version of the Delta Normalized Burn Ratio (Dnbr).” Remote Sensing of Environment 109 (1): 66–80. doi:10.1016/j.rse.2006.12.006.
  • Miller, J. D., and S. R. Yool. 2002. “Mapping Forest Post-fire Canopy Consumption in Several Overstory Types Using Multi-temporal Landsat TM and ETM Data.” Remote Sensing of Environment 82 (2–3): 481–496. doi:10.1016/S0034-4257(02)00071-8.
  • Patterson, M. W., and S. R. Yool. 1998. “Mapping Fire-induced Vegetation Mortality Using Landsat Thematic Mapper Data: A Comparison of Linear Transformation Techniques.” Remote Sensing of Environment 65: 132–142. doi:10.1016/S0034-4257(98)00018-2.
  • Pleniou, M., and N. Koutsias. 2013. “Sensitivity of Spectral Reflectance Values to Different Burn and Vegetation Ratios: A Multi-scale Approach Applied in A Fire Affected Area.” ISPRS Journal of Photogrammetry & Remote Sensing 79: 199–210. doi:10.1016/j.isprsjprs.2013.02.016.
  • Quintano, C., A. Fernández-Manso, and D. A. Roberts. 2013. “Multiple Endmember Spectral Mixture Analysis (MESMA) to Map Burn Severity Levels from Landsat Images in Mediterranean Countries.” Remote Sensing of Environment 136: 76–88. doi:10.1016/j.rse.2013.04.017.
  • Rishmawi, K. N., and I. Z. Gitas. 2001. “Burned Area Mapping on the Mediterranean Island of Thasos Using Low, Medium-high and Very High Spatial Resolution Satellite Data.” In Remote Sensing and Photogrammetry Society (RSPS2001) conference proceedings, London (pp. 12–14).
  • Roy, D. P., M. A. Wulder, T. R. Loveland, C. E. Woodcock, R. G. Allen, M. C. Anderson, D. Helder, et al. 2014. “Landsat-8: Science and Product Vision for Terrestrial Global Change Research.” Remote Sensing of Environment 145: 154–172. doi:10.1016/j.rse.2014.02.001.
  • Roy, D. P., Y. Jin, P. E. Lewis, and C. O. Justice. 2005. “Prototyping a Global Algorithm for Systematic fire-affected Area Mapping Using MODIS Time Series Data.” Remote Sensing of Environment 97: 137–162. doi:10.1016/j.rse.2005.04.007.
  • Ruescas, A. B., J. A. Sobrino, Y. Julien, J. C. Jiménez-Muñoz, G. Sòria, V. Hidalgo, M. Atitar, B. Franch, J. Cuenca, and C. Mattar. 2009. “Mapping Sub-pixel Burnt Percentage Using AVHRR Data. Application to the Alcalaten Area in Spain.” International Journal of Remote Sensing 31 (20): 5315–5330. doi:10.1080/01431160903369592.
  • Sifakis, N., D. Paronis, and I. Keramitsoglou. 2004. “Combining AVHRR Imagery with CORINE Land Cover Data to Observe Forest Fires and to Assess Their Consequences.” International Journal of Applied Earth Observation and Geoinformation 5: 263–274. doi:10.1016/j.jag.2004.06.004.
  • Sparks, A. M., L. Boschetti, A. M. Smith, W. T. Tinkham, K. O. Lannom, and B. A. Newingham. 2014. “An Accuracy Assessment of the MTBS Burned Area Product for Shrub–steppe Fires in the Northern Great Basin, United States.” International Journal of Wildland Fire 24: 70–78. doi:10.1071/WF14131.
  • Storey, E. A., D. A. Stow, and D. A. Roberts. 2019. “Evaluating Uncertainty in Landsat-derived Postfire Recovery Metrics Due to Terrain, Soil, and Shrub Type Variations in Southern California.” GIScience & Remote Sensing 1–17. doi:10.1080/15481603.2019.1703287.
  • Storey, E. A., D. A. Stow, and J. F. O’Leary. 2016. “Assessing Postfire Recovery of Chamise Chaparral Using Multi-temporal Spectral Vegetation Index Trajectories Derived from Landsat Imagery.” Remote Sensing of Environment 183: 53–64. doi:10.1016/j.rse.2016.05.018.
  • Strahler, A. H., C. E. Woodcock, and J. A. Smith. 1986. “On the Nature of Models in Remote Sensing.” Remote Sensing of Environment 20 (2): 121–139. doi:10.1016/0034-4257(86)90018-0.
  • Syphard, A. D., and J. E. Keeley. 2016. “Historical Reconstructions of California Wildfires Vary by Data Source.” International Journal of Wildland Fire 25 (12): 1221–1227. doi:10.1071/WF16050.
  • Syphard, A. D., V. C. Radeloff, J. E. Keeley, T. J. Hawbaker, M. K. Clayton, S. I. Stewart, and R. B. Hammer. 2007. “Human Influence on California Fire Regimes.” Ecological Applications 17 (5): 1388–1402. doi:10.1890/06-1128.1.
  • Teodoro, A., and A. Amaral. 2019. “A Statistical and Spatial Analysis of Portuguese Forest Fires in Summer 2016 considering LANDSAT 8 and Sentinel 2A Data.” Environments 6 (3): 1–36. doi:10.3390/environments6030036.
  • Turner, M. G., W. W. Hargrove, R. H. Gardner, and W. H. Romme. 1994. “Effects of Fire on Landscape Heterogeneity in Yellowstone National Park, Wyoming.” Journal of Vegetation Science 5: 731–742. doi:10.2307/3235886.
  • United States Geological Survey. 2019. “Land Surface Reflectance Climate Data Record.” Accessed October 10 2019. https://espa.cr.usgs.gov
  • United States interagency Monitoring Trends in Burn Severity programme. 2019. “Monitoring Trends in Burn Severity.” Accessed October 10 2019. https://mtbs.gov/direct-download
  • Vanderhoof, M. K., N. Fairaux, Y. J. G. Beal, and T. J. Hawbaker. 2017. “Validation of the USGS LANDSAT Burned Area Essential Climate Variable (BAECV) across the Conterminous United States.” Remote Sensing of Environment 198: 393–406. doi:10.1016/j.rse.2017.06.025.
  • Wang, G. G. 2002. “Fire Severity in Relation to Canopy Composition within Burned Boreal Mixedwood Stands.” Forest Ecology and Management 163: 85–92. doi:10.1016/S0378-1127(01)00529-1.
  • White, J. C., M. A. Wulder, T. Hermosilla, N. C. Coops, and G. W. Hobart. 2017. “A Nationwide Annual Characterization of 25 Years of Forest Disturbance and Recovery for Canada Using LANDSAT Time Series.” Remote Sensing of Environment 194: 303–321. doi:10.1016/j.rse.2017.03.035.
  • Wilkinson, G. G., and J. Megier. 1990. “Evidential Reasoning in a Pixel Classification hierarchy—A Potential Method for Integrating Image Classifiers and Expert System Rules Based on Geographic Context.” Remote Sensing 11 (10): 1963–1968.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.