868
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Three-dimensional-imaging thermal surfaces of coal fires based on UAV thermal infrared data

, , , &
Pages 672-692 | Received 12 May 2020, Accepted 02 Aug 2020, Published online: 19 Nov 2020

References

  • Agarwal, R., D. Singh, D. S. Chauhan, and K. P. Singh. 2006. “Detection of Coal Mine Fires in the Jharia Coal Field Using NOAA/AVHRR Data.” Journal of Geophysics and Engineering 3 (3): 212. doi:10.1088/1742-2132/3/3/002.
  • Ahmed, S., A. R. Abdellahi, A. Jardani, and R. Chen. 2018. “3D Geostatistical Inversion of Induced Polarization Data and Its Application to Coal Seam Fires.” Geophysics 83 (3): E133–E50. doi:10.1190/geo2017-0232.1.
  • Aicardi, I., F. Chiabrando, A. M. Lingua, F. Noardo, M. Piras, and B. Vigna. 2017. “A Methodology for Acquisition and Processing of Thermal Data Acquired by UAVs: A Test about Subfluvial Springs’ Investigations.” Geomatics, Natural Hazards and Risk 8 (1): 5–17. doi:10.1080/19475705.2016.1225229.
  • Bandelow, F.-K., and H. F. Gielisch. 2004. “Modern Exploration Methods as Key to Fighting of Uncontrolled Coal Fires in China.” Paper presented at the 2004 Denver annual meeting, Denver, CO.
  • Bell, F. G., and L. J. Donnelly. 2006. Mining and Its Impact on the Environment. New York: CRC Press.
  • Bhattacharya, A., C. S. Reddy, and T. Mukherjee. 1991. “Multi-tier Remote Sensing Data Analysis for Coal Fire Mapping in Jharia Coalfield of Bihar, India.” Paper presented at the proceedings of the twelfth Asian conference on remote sensing. Singapore.
  • Gerlinde, S., S. Bernhard, and C. Yu. 2008. “Geophysical Investigation of Wuda Coal Mining Area, Inner Mongolia: Electromagnetics and Magnetics for Coal Fire Detection.” In Spontaneous Coal Seam Fires: Mitigating a Global Disaster. International Research for Sustainable Control and Management, edited by Stefan Voigt, 336–350. Beijing: Tsinghua University Press.
  • Greene, G. W., R. M. Moxham, and A. H. Harvey. 1969. “Aerial Infrared Surveys and Borehole Temperature Measurements of Coal Mine Fires in Pennsylvania.” Paper presented at the remote sensing of environment. VI vols. Michigan
  • Hooper, R. L. 1987. “Factors Affecting the Magnetic Susceptibility of Baked Rocks above a Burned Coal Seam.” International Journal Of Coal Geology 9 (2): 157–169. doi:10.1016/0166-5162(87)90043-7.
  • Hu, Z., and Q. Xia. 2017. “An Integrated Methodology for Monitoring Spontaneous Combustion of Coal Waste Dumps Based on Surface Temperature Detection.” Applied Thermal Engineering 122: 27–38. doi:10.1016/j.applthermaleng.2017.05.019.
  • Huang, Y., H. Huang, W. Chen, and Y. X. Li. 1991. “Remote Sensing Approaches for Underground Coal Fire Detection.” Paper presented at the proceedings of the Beijing international conference on reducing geological hazards. Beijing
  • Ide, T. S., N. Crook, and F. M. Orr. 2011. “Magnetometer Measurements to Characterize a Subsurface Coal Fire.” International Journal of Coal Geology 87 (3): 190–196. doi:10.1016/j.coal.2011.06.007.
  • Jiang, W., K. Jia, Z. Chen, Y. Deng, and P. Rao. 2016. “Using Spatiotemporal Remote Sensing Data to Assess the Status and Effectiveness of the Underground Coal Fire Suppression Efforts during 2000–2015 in Wuda, China.” Journal of Cleaner Production 142: 565–577.
  • Kuenzer, C., C. Hecker, J. Zhang, S. Wessling, and W. Wagner. 2008. “The Potential of Multidiurnal MODIS Thermal Band Data for Coal Fire Detection.” International Journal of Remote Sensing 29 (3): 923–944. doi:10.1080/01431160701352147.
  • Kuenzer, C., and G. B. Stracher. 2012. “Geomorphology of Coal Seam Fires.” Geomorphology 138 (1): 209–222. doi:10.1016/j.geomorph.2011.09.004.
  • Kuenzer, C., J. Zhang, A. Tetzlaff, P. Van Dijk, S. Voigt, H. Mehl, and W. Wagner. 2007b. “Uncontrolled Coal Fires and Their Environmental Impacts: Investigating Two Arid Mining Regions in North-central China.” Applied Geography 27 (1): 42–62. doi:10.1016/j.apgeog.2006.09.007.
  • Kuenzer, C., S. Wessling, J. Zhang, T. Litschke, M. Schmidt, J. Schulz, H. Gielisch, and W. Wagner. 2007a. “Concepts for Green House Gas Emission Estimating of Underground Coal Seam Fires.” Paper presented at the geophysical research abstracts. Vienna.
  • Lewińska, P., and A. Dyczko. 2016. “Thermal Digital Terrain Model of a Coal Spoil Tip–a Way of Improving Monitoring and Early Diagnostics of Potential Spontaneous Combustion Areas.” Journal of Ecological Engineering 17 (4): 170–179. doi:10.12911/22998993/64605.
  • Prakash, A., E. J. Fielding, R. Gens, J. L. Van Genderen, and D. L. Evans. 2001. “Data Fusion for Investigating Land Subsidence and Coal Fire Hazards in a Coal Mining Area.” International Journal of Remote Sensing 22 (6): 921–932. doi:10.1080/014311601300074441.
  • Prakash, A., R. G. S. Sastry, R. P. Gupta, and A. K. Saraf. 1995. “Estimating the Depth of Buried Hot Features from Thermal IR Remote Sensing Data: A Conceptual Approach.” International Journal of Remote Sensing 16 (13): 2503–2510. doi:10.1080/01431169508954572.
  • Prakash, A., and R. P. Gupta. 1999. “Surface Fires in Jharia Coalfield, India-their Distribution and Estimation of Area and Temperature from TM Data.” International Journal of Remote Sensing 20 (10): 1935–1946. doi:10.1080/014311699212281.
  • Prakash, A., R. P. Gupta, and A. K. Saraf. 1997. “A Landsat TM Based Comparative Study of Surface and Subsurface Fires in the Jharia Coalfield, India.” International Journal of Remote Sensing 18 (11): 2463–2469. doi:10.1080/014311697217738.
  • Revil, A., M. Karaoulis, S. Srivastava, and S. Byrdina. 2013. “Thermoelectric Self-potential and Resistivity Data Localize the Burning Front of Underground Coal Fires.” Geophysics 78 (5): B259–B73. doi:10.1190/geo2013-0013.1.
  • Sagan, V., M. Maimaitijiang, P. Sidike, K. Eblimit, K. T. Peterson, S. Hartling, F. Esposito, K. Khanal, M. Newcomb, and D. Pauli. 2019. “Uav-based High Resolution Thermal Imaging for Vegetation Monitoring, and Plant Phenotyping Using Ici 8640 P, Flir Vue Pro R 640, and Thermomap Cameras.” Remote Sensing 11 (3): 330. doi:10.3390/rs11030330.
  • Saraf, A. K., A. Prakash, S. Sengupta, and R. P. Gupta. 1995. “Landsat-TM Data for Estimating Ground Temperature and Depth of Subsurface Coal Fire in the Jharia Coalfield, India.” International Journal of Remote Sensing 16 (12): 2111–2124. doi:10.1080/01431169508954545.
  • Shao, Z., D. Wang, K. Cao, W. Si, Y. Li, and J. Liu. 2019. “Treatment of Smoldering Coal Refuse Piles: An Application in China.” Environmental Technology 41 (23): 3105–3118
  • Shao, Z., A. Revil, D. Mao, and D. Wang. 2016a. “Induced Polarization Signature of Coal Seam Fires.” Geophysical Journal International 208 (3): 1313–1331. doi:10.1093/gji/ggw452.
  • Shao, Z., D. Wang, Y. Wang, and X. Zhong. 2014. “Theory and Application of Magnetic and Self-potential Methods in the Detection of the Heshituoluogai Coal Fire, China.” Journal of Applied Geophysics 104: 64–74. doi:10.1016/j.jappgeo.2014.02.014.
  • Shao, Z., D. Wang, Y. Wang, X. Zhong, X. Tang, and D. Xi. 2016b. “Electrical Resistivity of Coal-bearing Rocks under High Temperature and the Detection of Coal Fires Using Electrical Resistance Tomography.” Geophysical Journal International 204 (2): 1316–1331. doi:10.1093/gji/ggv525.
  • Shao, Z., D. Wang, Y. Wang, X. Zhong, X. Tang, and X. Hu. 2015. “Controlling Coal Fires Using the Three-phase Foam and Water Mist Techniques in the Anjialing Open Pit Mine, China.” Natural Hazards 75 (2): 1833–1852. doi:10.1007/s11069-014-1401-3.
  • Shao, Z., D. Wang, Y. Wang, X. Zhong, Y. Zhang, and W. Song. 2017. “Experimental Study of the Self-potential Anomaly Caused by Coal Fires.” Journal of Applied Geophysics 145: 124–132. doi:10.1016/j.jappgeo.2017.08.003.
  • Slavecki, R. J. 1964. “Detection and Location of Subsurface Coal Fires.” Paper presented at the proceedings of the third symposium on remote sensing of environment. Michinggan.
  • Song, Z., and C. Kuenzer. 2014. “Coal Fires in China over the Last Decade: A Comprehensive Review.” International Journal of Coal Geology 133: 72–99. doi:10.1016/j.coal.2014.09.004.
  • Song, Z., C. Kuenzer, H. Zhu, Z. Zhang, Y. Jia, Y. Sun, and J. Zhang. 2015. “Analysis of Coal Fire Dynamics in the Wuda Syncline Impacted by Fire-fighting Activities Based on In-situ Observations and Landsat-8 Remote Sensing Data.” International Journal of Coal Geology 141: 91–102. doi:10.1016/j.coal.2015.03.008.
  • Srivardhan, V., S. K. Pal, J. Vaish, S. Kumar, A. K. Bharti, and P. Priyam. 2016. “Particle Swarm Optimization Inversion of Self-potential Data for Depth Estimation of Coal Fires over East Basuria Colliery, Jharia Coalfield, India.” Environmental Earth Sciences 75 (8): 1–12. doi:10.1007/s12665-015-5222-9.
  • Sternberg, R., and C. Lippincott. 2004. “Magnetic Surveys over Clinkers and Coal Seam Fires in Western North Dakota.” Paper presented at the 2004 Denver annual meeting. Denver.
  • Stracher, G. B. 2004. “Coal Fires Burning around the World: A Global Catastrophe.” International Journal of Coal Geology 59 (1): 1–6. doi:10.1016/j.coal.2004.01.001.
  • Stracher, G. B., A. Prakash, and E. V. Sokol. 2010. Coal and Peat Fires: A Global Perspective: Volume 1: Coal-geology and Combustion. 1 vols. Oxford: Elsevier.
  • Szentpeteri, K, TR Setiawan, and A Ismanto. 2016. “Drones (UAVs) in mining and Exploration. An application example: Pit Mapping and Geological Modelling.„ Paper presented at the Unconventional Exploration Target & new tools in mineral and coal exploration, Bandung, West Java, Indonesia
  • Wang, H., Z. Hu, X. Wang, H. Chen, and J. Fan. 2015a. “Constructing Infrared 3D Model of Spontaneous Coal Gangue Piles Surface Temperature Field.” China Coal 41 (8): 131–135. ( In Chinese).
  • Wang, Y.-J., T. Feng, Y. Huang, W. Jian, and C.-J. Wei. 2015b. “Monitoring Coal Fires in Datong Coalfield Using Multi-source Remote Sensing Data.” Transactions of Nonferrous Metals Society of China 25 (10): 3421–3428. doi:10.1016/S1003-6326(15)63977-2.
  • Yang, G.-F., J.-J. Zhou, and X.-G. Tian. 2016. “A Research on Coalfield Fire Detection in Daliuta Mining Area at Inner Mongolia Based on Hyperspectral Thermal Infrared Remote Sensing.” Paper presented at the international symposium on optoelectronic technology and application. Beijing.
  • Zhang, X. 1998. Coal Fires in Northwest China: Detection, Monitoring, and Prediction Using Remote Sensing Data. TU Delft, Delft University of Technology. Delft.
  • Zhang, X., J. L. Van Genderen, and S. B. Kroonenberg. 1997. “A Method to Evaluate the Capability of Landsat-5 TM Band 6 Data for Sub-pixel Coal Fire Detection.” International Journal of Remote Sensing 18 (15): 3279–3288. doi:10.1080/014311697217080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.