707
Views
8
CrossRef citations to date
0
Altmetric
Research Article

Monitoring coal seam fires in Xinjiang using comprehensive thermal infrared and time series InSAR detection

, &
Pages 2220-2245 | Received 03 Jun 2020, Accepted 25 Aug 2020, Published online: 30 Dec 2020

References

  • Aldak. 2018. “Taming the “Flame Mountain” to Be a New Means (Beautiful China · Harmonious Symbiosis).” In People’s Daily, 14. April 23. Beijing, China: PEOPLE'S DAILY PRESS.
  • Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti. 2002. “A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms.” IEEE Transactions on Geoscience and Remote Sensing 40 (11): 2375–2383. doi:10.1109/tgrs.2002.803792.
  • Bhattacharya, A., M. K. Arora, and M. L. Sharma. 2012. “Usefulness of Synthetic Aperture Radar (SAR) Interferometry for Digital Elevation Model (DEM) Generation and Estimation of Land Surface Displacement in Jharia Coal Field Area.” Geocarto International 27 (1): 57–77. doi:10.1080/10106049.2011.614358.
  • Biswal, S. S., S. Raval, and A. K. Gorai. 2019. “Delineation and Mapping of Coal Mine Fire Using Remote Sensing Data - a Review.” International Journal of Remote Sensing 40 (17): 6499–6529. doi:10.1080/01431161.2018.1547455.
  • Carpentier, O., D. Defer, E. Antczak, and B. Duthoit. 2005. “The Use of Infrared Thermographic and GPS Topographic Surveys to Monitor Spontaneous Combustion of Coal Tips.” Applied Thermal Engineering 25 (17–18): 2677–2686. doi:10.1016/j.applthermaleng.2004.11.017.
  • Cracknell, A. P., and S. B. Mansor. 1992. “Detection of Sub-surface Coal Fires Using Landsat Thematic Mapper Data.” International Archives of Photogrammetry and Remote Sensing 29: 750–753.
  • Du, X. M., S. Bernardes, D. Y. Cao, T. R. Jordan, Z. Yan, G. Yang, and Z. P. Li. 2015a. “Self-Adaptive Gradient-Based Thresholding Method for Coal Fire Detection Based on ASTER Data-Part 2, Validation and Sensitivity Analysis.” Remote Sensing 7 (3): 2602–2626. doi:10.3390/rs70302602.
  • Du, X. M., D. Y. Cao, D. Mishra, S. Bernardes, T. R. Jordan, and M. Madden. 2015b. “Self-Adaptive Gradient-Based Thresholding Method for Coal Fire Detection Using ASTER Thermal Infrared Data, Part I: Methodology and Decadal Change Detection.” Remote Sensing 7 (6): 6576–6610. doi:10.3390/rs70606576.
  • Ellyett, C. D., and A. W. Fleming. 1974. “Thermal Infrared Imagery of the Burning Mountain Coal Fire.” Remote Sensing of Environment 3 (1): 79–86. doi:10.1016/0034-4257(74)90040-6.
  • Fan, H. D., L. Lu, and Y. H. Yao. 2018. “Method Combining Probability Integration Model and a Small Baseline Subset for Time Series Monitoring of Mining Subsidence.” Remote Sensing 10 (9): 1444. doi:10.3390/rs10091444.
  • Fan, H. D., Q. Xu, Z. B. Hu, and S. Du. 2017. “Using Temporarily Coherent Point Interferometric Synthetic Aperture Radar for Land Subsidence Monitoring in a Mining Region of Western China.” Journal of Applied Remote Sensing 11. doi:10.1117/1.Jrs.11.026003.
  • Ferretti, A., A. Fumagalli, F. Novali, C. Prati, F. Rocca, and A. Rucci. 2011. “A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR.” IEEE Transactions on Geoscience and Remote Sensing 49 (9): 3460–3470. doi:10.1109/tgrs.2011.2124465.
  • Ferretti, A., C. Prati, and F. Rocca. 2000. “Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry.” IEEE Transactions on Geoscience and Remote Sensing 38 (5): 2202–2212. doi:10.1109/36.868878.
  • Gupta, M., K. K. Mohanty, D. Kumar, and R. Banerjee. 2014. “Monitoring Surface Elevation Changes in Jharia Coalfield, India Using Synthetic Aperture Radar Interferometry.” Environmental Earth Sciences 71 (6): 2875–2883. doi:10.1007/s12665-013-2664-9.
  • Gupta, N., T. H. Syed, and A. Athiphro. 2013. “Monitoring Subsurface Coal Fires in Jharia Coalfield Using Observations of Land Subsidence from Differential Interferometric Synthetic Aperture Radar (Dinsar).” Journal of Earth System Science 122 (5): 1249–1258. doi:10.1007/s12040-013-0355-2.
  • Gupta, S., V. K. Sajith, M. K. Arora, and M. L. Sharma. 2006. “Surface Displacement Studies Using Differential SAR Interferometry: An Overview.” In Disaster Forewarning Diagnostic Methods and Management, 13-16. Goa, India.
  • Hooper, A. 2008. “A Multi-temporal InSAR Method Incorporating Both Persistent Scatterer and Small Baseline Approaches.” Geophysical Research Letters 35 (16). doi:10.1029/2008gl034654.
  • Hu, Z. Q., and Q. Xia. 2017. “An Integrated Methodology for Monitoring Spontaneous Combustion of Coal Waste Dumps Based on Surface Temperature Detection.” Applied Thermal Engineering 122: 27–38. doi:10.1016/j.applthermaleng.2017.05.019.
  • Huo, H. Y., Z. Y. Ni, C. X. Gao, E. Y. Zhao, Y. Z. Zhang, Y. Lian, H. L. Zhang, et al. 2015. “A Study of Coal Fire Propagation with Remotely Sensed Thermal Infrared Data.” Remote Sensing 7 (3): 3088–3113. doi:10.3390/rs70303088.
  • Ide, T. S., D. Pollard, and F. M. Orr. 2010. “Fissure Formation and Subsurface Subsidence in a Coalbed Fire.” International Journal of Rock Mechanics and Mining Sciences 47 (1): 81–93. doi:10.1016/j.ijrmms.2009.05.007.
  • Jiang, L. M., H. Lin, J. W. Ma, B. Kong, and Y. Wang. 2011. “Potential of Small-baseline SAR Interferometry for Monitoring Land Subsidence Related to Underground Coal Fires: Wuda (Northern China) Case Study.” Remote Sensing of Environment 115 (2): 257–268. doi:10.1016/j.rse.2010.08.008.
  • Jiang, W. G., K. Jia, Z. Chen, Y. Deng, and P. Z. Rao. 2017. “Using Spatiotemporal Remote Sensing Data to Assess the Status and Effectiveness of the Underground Coal Fire Suppression Efforts during 2000-2015 in Wuda, China.” Journal of Cleaner Production 142: 565–577. doi:10.1016/j.jclepro.2016.03.082.
  • Jimenez-Munoz, J. C., J. Cristobal, J. A. Sobrino, G. Soria, M. Ninyerola, and X. Pons. 2009. “Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval from Landsat Thermal-Infrared Data.” IEEE Transactions on Geoscience and Remote Sensing 47 (1): 339–349. doi:10.1109/tgrs.2008.2007125.
  • Jimenez-Munoz, J. C., J. A. Sobrino, D. Skokovic, C. Mattar, and J. Cristobal. 2014. “Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data.” Ieee Geoscience and Remote Sensing Letters 11 (10): 1840–1843. doi:10.1109/lgrs.2014.2312032.
  • Kuenzer, C., and G. B. Stracher. 2012. “Geomorphology of Coal Seam Fires.” Geomorphology 138 (1): 209–222. doi:10.1016/j.geomorph.2011.09.004.
  • Kuenzer, C., J. Zhang, J. Li, S. Voigt, H. Mehl, and W. Wagner. 2007. “Detecting Unknown Coal Fires: Synergy of Automated Coal Fire Risk Area Delineation and Improved Thermal Anomaly Extraction.” International Journal of Remote Sensing 28 (20): 4561–4585. doi:10.1080/01431160701250432.
  • Li, F., Q. L. Wang, Y. L. Zhao, and A. Qian. 2019. “Coal Fires Detection Study Using Adaptive-edge Threshold Algorithm.” China Mining Magazine 28 (2): 152–157.
  • Liu, J. L., Y. J. Wang, Y. Li, L. B. Dang, X. X. Liu, H. F. Zhao, and S. Y. Yan. 2019. “Underground Coal Fires Identification and Monitoring Using Time-Series InSAR with Persistent and Distributed Scatterers: A Case Study of Miquan Coal Fire Zone in Xinjiang, China.” Ieee Access 7: 164492–164506. doi:10.1109/access.2019.2952363.
  • Lu, L., H. D. Fan, J. Liu, J. L. Liu, and J. F. Yin. 2019. “Time Series Mining Subsidence Monitoring with Temporarily Coherent Points Interferometry Synthetic Aperture Radar: A Case Study in Peixian, China.” Environmental Earth Sciences 78: 15. doi:10.1007/s12665-019-8475-x.
  • Ma, Y., H. P. Wu, L. Z. Wang, B. M. Huang, R. Ranjan, A. Zomaya, and W. Jie. 2015. “Remote Sensing Big Data Computing: Challenges and Opportunities.” Future Generation Computer Systems-the International Journal of Escience 51: 47–60. doi:10.1016/j.future.2014.10.029.
  • McKenna, P., P. D. Erskine, A. M. Lechner, and S. Phinn. 2017. “Measuring Fire Severity Using UAV Imagery in Semi-arid Central Queensland, Australia.” International Journal of Remote Sensing 38 (14): 4244–4264. doi:10.1080/01431161.2017.1317942.
  • Prakash, A., E. J. Fielding, R. Gens, J. L. Van Genderen, and D. L. Evans. 2001. “Data Fusion for Investigating Land Subsidence and Coal Fire Hazards in a Coal Mining Area.” International Journal of Remote Sensing 22 (6): 921–932. doi:10.1080/014311601300074441.
  • Prakash, A., R. Gens, and Z. Vekerdy. 1999. “Monitoring Coal Fires Using Multi-temporal Night-time Thermal Images in a Coalfield in North-west China.” International Journal of Remote Sensing 20 (14): 2883–2888. doi:10.1080/014311699211868.
  • Prakash, A., R. P. Gupta, and A. K. Saraf. 1997. “A Landsat TM Based Comparative Study of Surface and Subsurface Fires in the Jharia Coalfield, India.” International Journal of Remote Sensing 18 (11): 2463–2469. doi:10.1080/014311697217738.
  • Prakash, A., A. K. Saraf, R. P. Gupta, M. Dutta, and R. M. Sundaram. 1995. “Surface Thermal Anomalies with Underground Fires in Jharia Coal Mine, India.” International Journal of Remote Sensing 16 (12): 2105–2109. doi:10.1080/01431169508954544.
  • Pu, Y. 2017. “Experimental Study on the Characteristics of Typical Pollutants Produced from Underground Coal Fire.” Master, Xinjiang University.
  • Qin, Z. H., Z. Minghua, A. Karnieli, and P. Berliner. 2001. “Mono-window Algorithm for Calculating Surface Temperature Using Landsat TM6 Data.” Acta Geographica Sinica, 56 (4): 456–466.
  • Roy, P., A. Guha, and K. V. Kumar. 2015. “An Approach of Surface Coal Fire Detection from ASTER and Landsat-8 Thermal Data: Jharia Coal Field, India.” International Journal of Applied Earth Observation and Geoinformation 39: 120–127. doi:10.1016/j.jag.2015.03.009.
  • Rozenstein, O., Z. H. Qin, Y. Derimian, and A. Karnieli. 2014. “Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm.” Sensors 14 (4): 5768–5780. doi:10.3390/s140405768.
  • Shao, Z. L., X. Y. Jia, X. X. Zhong, D. M. Wang, J. Wei, Y. M. Wang, and L. Chen. 2018. “Detection, Extinguishing, and Monitoring of a Coal Fire in Xinjiang, China.” Environmental Science and Pollution Research 25 (26): 26603–26616. doi:10.1007/s11356-018-2715-6.
  • Shao, Z. L., D. M. Wang, Y. M. Wang, and X. X. Zhong. 2014. “Theory and Application of Magnetic and Self-potential Methods in the Detection of the Heshituoluogai Coal Fire, China.” Journal of Applied Geophysics 104: 64–74. doi:10.1016/j.jappgeo.2014.02.014.
  • Singh, N., R. S. Chatterjee, D. Kumar, D. C. Panigrahi, and R. Mujawdiya. 2020. “Retrieval of Precise Land Surface Temperature from ASTER Night-time Thermal Infrared Data by Split Window Algorithm for Improved Coal Fire Detection in Jharia Coalfield, India.” Geocarto International 1–18. doi:10.1080/10106049.2020.1753820.
  • Slavecki, R. J. 1964. “Detection and Location of Subsurface Coal Fires.” In Proceedings of the Third Symposium on Remote Sensing of Environment, 537–547. Ann Arobor, MI: University of Michigan.
  • Song, Z. Y., and C. Kuenzer. 2014. “Coal Fires in China over the Last Decade: A Comprehensive Review.” International Journal of Coal Geology 133: 72–99. doi:10.1016/j.coal.2014.09.004.
  • Song, Z. Y., C. Kuenzer, H. Q. Zhu, Z. Zhang, Y. R. Jia, Y. L. Sun, and J. Z. Zhang. 2015. “Analysis of Coal Fire Dynamics in the Wuda Syncline Impacted by Fire-fighting Activities Based on In-situ Observations and Landsat-8 Remote Sensing Data.” International Journal of Coal Geology 141: 91–102. doi:10.1016/j.coal.2015.03.008.
  • Syed, T. H., M. J. Riyas, and C. Kuenzer. 2018. “Remote Sensing of Coal Fires in India: A Review.” Earth-Science Reviews 187: 338–355. doi:10.1016/j.earscirev.2018.10.009.
  • Voigt, S., A. Tetzlaff, J. Z. Zhang, C. Kunzer, B. Zhukov, G. Strunz, D. Oertel, A. Roth, P. van Dijk, and H. Mehl. 2004. “Integrating Satellite Remote Sensing Techniques for Detection and Analysis of Uncontrolled Coal Seam Fires in North China.” International Journal of Coal Geology 59 (1–2): 121–136. doi:10.1016/j.coal.2003.12.013.
  • Wang, Y. J., Y. B. Sheng, Q. Gu, Y. Y. Sun, X. J. Wei, and Z. J. Zhang. 2008. “Infrared Thermography Monitoring and Early Warning of the Spontaneous Combustion of Coal Gangue Pile.” Paper Presented at the The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China.
  • Wu, J. J., and X. C. Liu. 2011. “Risk Assessment of Underground Coal Fire Development at Regional Scale.” International Journal of Coal Geology 86 (1): 87–94. doi:10.1016/j.coal.2010.12.007.
  • Xia, Q., and Z. Q. Hu. 2016. “A Novel Method to Monitor Coal Fires Based on Multi-Spectral Landsat Images.” Spectroscopy and Spectral Analysis 36 (8): 2712–2720. doi:10.3964/j..1000-0593(2016)08-2712-09.
  • Yan, J. 2018. “Discussion on the Causes of Fire Zone’s Continuous Expansion and Regeneration in Xinjiang Coalfield.” Shaanxi Coal 37 (2): 57–59.
  • Yang, B., Y. H. Chen, J. Li, and A. Gong, and Ieee. 2005. “Simple Normalization of Multi-temporal Thermal IR Data and Applied Research on the Monitoring of Typical Coal Fires in Northern China.” In Igarss 2005: Ieee International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 5725–5728, Seoul, South Korea.
  • Zhang, J., W. Wagner, A. Prakash, H. Mehl, and S. Voigt. 2004. “Detecting Coal Fires Using Remote Sensing Techniques.” International Journal of Remote Sensing 25 (16): 3193–3220. doi:10.1080/01431160310001620812.
  • Zhang, J. M. 2008. Underground Coal Fires in China: Origin, Detection, Fire-fighting, and Prevention. Beijing, China: China Coal Industry Publishing House.
  • Zhang, X., J. L. Van Genderen, H. Guan, and S. Kroonenberg. 2003. “Spatial Analysis of Thermal Anomalies from Airborne Multi-spectral Data.” International Journal of Remote Sensing 24 (19): 3727–3742. doi:10.1080/0143116031000095925.
  • Zhou, L. F., D. R. Zhang, J. Wang, Z. Q. Huang, and D. L. Pan. 2013. “Mapping Land Subsidence Related to Underground Coal Fires in the Wuda Coalfield (Northern China) Using a Small Stack of ALOS PALSAR Differential Interferograms.” Remote Sensing 5 (3): 1152–1176. doi:10.3390/rs5031152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.