231
Views
8
CrossRef citations to date
0
Altmetric
Research Article

A Multi-Objective Enhanced Fruit Fly Optimization (MO-EFOA) Framework for Despeckling SAR Images using DTCWT based Local Adaptive Thresholding

ORCID Icon, ORCID Icon & ORCID Icon
Pages 5493-5514 | Received 13 Oct 2020, Accepted 05 Mar 2021, Published online: 06 May 2021

References

  • Aksel, A., A. D. Gilliam, J. A. Hossack, and S. T. Acton. 2006. “Speckle Reducing Anisotropic Diffusion for Echocardiography.” Conference Record - Asilomar Conference on Signals, Systems and Computers 11 (11): 1988–1992. doi:10.1109/ACSSC.2006.355113.
  • Argenti, F., and L. Alparone. 2002. “Speckle Removal from SAR Images in the Undecimated Wavelet Domain.” IEEE Transactions on Geoscience and Remote Sensing 40 (11): 2363–2374. doi:10.1109/TGRS.2002.805083.
  • Bi, H., G. Bi, B. Zhang, and W. Hong. 2018. “Complex-image-based Sparse Sar Imaging and Its Equivalence.” IEEE Transactions on Geoscience and Remote Sensing 56 (9): 5006–5014. doi:10.1109/TGRS.2018.2803802.
  • Cao, X., Y. Ji, L. Wang, B. Ji, L. Jiao, and J. Han. 2019. “SAR Image Change Detection Based on Deep Denoising and CNN.” IET Image Processing 13 (9): 1509–1515. doi:10.1049/iet-ipr.2018.5172.
  • Choi, H., and J. Jeong. 2019. “Speckle Noise Reduction Technique for Sar Images Using Statistical Characteristics of Speckle Noise and Discrete Wavelet Transform.” Remote Sensing 11 (10): 10. doi:10.3390/rs11101184.
  • Da Cunha, A. L., J. Zhou, and M. N. Do. 2006. “The Nonsubsampled Contourlet Transform: Theory, Design, and Applications.” IEEE Transactions on Image Processing 15 (10): 3089–3101. doi:10.1109/TIP.2006.877507.
  • Darus, M. S., S. N. Sulaiman, I. S. Isa, Z. Hussain, N. M. Tahir, and N. A. M. Isa (2017). Modified Hybrid Median Filter for Removal of Low Density Random-valued Impulse Noise in Images. Proceedings - 6th IEEE International Conference on Control System, Computing and Engineering, ICCSCE 2016, November, 528–533,Penang, Malaysia. 10.1109/ICCSCE.2016.7893633
  • Farhadiani, R., S. Homayouni, and A. Safari. 2019. “Hybrid SAR Speckle Reduction Using Complex Wavelet Shrinkage and Non-local PCA-based Filtering.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12 (5): 1489–1496. doi:10.1109/JSTARS.2019.2907655.
  • Goodman, J.W. (1984). Statistical Properties of Laser Speckle Patterns. In: Dainty J.C. (eds) Laser Speckle and Related Phenomena. Topics in Applied Physics, vol 9. Berlin: Springer. https://doi.org/10.1007/978-3-662-43205-1_2
  • Hazarika, D., and M. Bhuyan (2013). Despeckling SAR Images in the Lapped Transform Domain. 2013 4th National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics, NCVPRIPG 2013, Jodhpur, India. 10.1109/NCVPRIPG.2013.6776255
  • Horé, A., and D. Ziou (2010). Image Quality Metrics: PSNR Vs. SSIM. Proceedings - International Conference on Pattern Recognition, ICPR 2010 2366–2369. ,Instanbul, Turkey. 10.1109/ICPR.2010.579
  • Hou, B., Z. Wen, L. Jiao, and Q. Wu. 2018. “Target-oriented High-resolution SAR Image Formation via Semantic Information Guided Regularizations.” IEEE Transactions on Geoscience and Remote Sensing 56 (4): 1922–1939. doi:10.1109/TGRS.2017.2769808.
  • Hu, K., Q. Cheng, B. Li, and X. Gao. 2018. “The Complex Data Denoising in MR Images Based on the Directional Extension for the Undecimated Wavelet Transform.” Biomedical Signal Processing and Control 39: 336–350. doi:10.1016/j.bspc.2017.08.014.
  • Huang, H., F. Zhang, Y. Zhou, Q. Yin, and W. Hu (2019). High Resolution SAR Image Synthesis with Hierarchical Generative Adversarial Networks.IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, 2782–2785, Yokohama, Japan. 10.1109/igarss.2019.8900494
  • Hurley, P., and M. Simeoni. 2016. “FLEXIBEAM : ANALYTIC SPATIAL FILTERING BY BEAMFORMING IBM Zurich Research Laboratory, CH-8803 R ¨ Ecole Polytechnique F ´.” Icassp 2016: 2877–2880.
  • Jayapal, J., and R. Subban. 2020. “Automated Lion Optimization Algorithm Assisted Denoising Approach with Multiple Filters.” Multimedia Tools and Applications 79 (5–6): 4041–4056. doi:10.1007/s11042-019-07803-x.
  • Jidesh, P., and B. Balaji. 2018. “Adaptive Non-local Level-set Model for Despeckling and Deblurring of Synthetic Aperture Radar Imagery.” International Journal of Remote Sensing 39 (20): 6540–6556. doi:10.1080/01431161.2018.1460510.
  • Kang, J., J. Y. Lee, and Y. Yoo. 2016. “A New Feature-Enhanced Speckle Reduction Method Based on Multiscale Analysis for Ultrasound B-Mode Imaging.” IEEE Transactions on Biomedical Engineering 63 (6): 1178–1191. doi:10.1109/TBME.2015.2486042.
  • Keydel, E. R., A. Arbor, S. W. Lee, and J. T. Moore (1975). Against Measured Data Over A Broad Range Of Challenging Real World Battlefield Scenarios . These Extended Operating Conditions Table 1 : Summary OfMSTAR Extended Operating Conditions ntra-Cass V ’ arability Obscuratin (Occkision and/orLiyover): Up to . 228–242.
  • Kuan, D. T., A. A. Sawchuk, T. C. Strand, and P. Chavel. 1987. “Adaptive Restoration of Images with Speckle.” IEEE Transactions on Acoustics, Speech, and Signal Processing 35 (3): 373–383. doi:10.1109/TASSP.1987.1165131.
  • Lee,, J. S. 1983. “Digital Image Smoothing and the Sigma Filter.” Computer Vision, Graphics and Image Processing 24 (2): 255–269. doi:10.1016/0734-189X(83)90047-6.
  • Li, Y., H. Gong, D. Feng, and Y. Zhang. 2011. “An Adaptive Method of Speckle Reduction and Feature Enhancement for SAR Images Based on Curvelet Transform and Particle Swarm Optimization.” IEEE Transactions on Geoscience and Remote Sensing 49 (8): 3105–3116. doi:10.1109/TGRS.2011.2121072.
  • Liu, Y., Z. Wang, L. Si, L. Zhang, C. Tan, and J. Xu. 2017. “A Non-reference Image Denoising Method for Infrared Thermal Image Based on Enhanced Dual-tree Complex Wavelet Optimized by Fruit Fly Algorithm and Bilateral Filter.” Applied Sciences (Switzerland) 7: 11. doi:10.3390/app7111190.
  • Lopes, A., R. Touzi, and E. Nezry. 1990. “Adaptive Speckle Filters and Scene Heterogeneity.” IEEE Transactions on Geoscience and Remote Sensing 28 (6): 992–1000. doi:10.1109/36.62623.
  • Malik, M., F. Ahsan, and S. Mohsin. 2016. “Adaptive Image Denoising Using Cuckoo Algorithm.” Soft Computing 20 (3): 925–938. doi:10.1007/s00500-014-1552-x.
  • Pan, W. T. 2012. “A New Fruit Fly Optimization Algorithm: Taking the Financial Distress Model as an Example.” Knowledge-Based Systems 26: 69–74. doi:10.1016/j.knosys.2011.07.001.
  • Panetta, K., L. Bao, and S. Agaian. 2016. “Sequence-to-Sequence Similarity-Based Filter for Image Denoising.” IEEE Sensors Journal 16 (11): 4380–4388. doi:10.1109/JSEN.2016.2548782.
  • Panigrahi, S. K. (2019). 2019 International Conference on Wireless Communications, Signal Processing and Networking, Speckle noise removal by total variation and curvelet coefficient shrinkage of residual noise, WiSPNET 2019, 101–106, Chennai, India. 10.1109/WiSPNET45539.2019.9032763
  • Parrilli, S., M. Poderico, C. V. Angelino, and L. Verdoliva. 2012. “A Nonlocal SAR Image Denoising Algorithm Based on LLMMSE Wavelet Shrinkage.” IEEE Transactions on Geoscience and Remote Sensing 50 (2): 606–616. doi:10.1109/TGRS.2011.2161586.
  • Rai, H. M., and K. Chatterjee. 2019. “Hybrid Adaptive Algorithm Based on Wavelet Transform and Independent Component Analysis for Denoising of MRI Images.” Measurement: Journal of the International Measurement Confederation 144: 72–82. doi:10.1016/j.measurement.2019.05.028.
  • Sahebi, M. R., and A. Heidarian. 2015. “Criterion for Designing Adaptive Filters Based on Segregation of Grey Levels in SAR Images.” Electronics Letters 51 (12): 935–937. doi:10.1049/el.2014.4178.
  • Sauvola, J., and M. Pietikäinen. 2000. “Adaptive Document Image Binarization.” Pattern Recognition 33 (2): 225–236. doi:10.1016/S0031-3203(99)00055-2.
  • Selesnick, I. W., R. G. Baraniuk, and N. G. Kingsbury. 2005. “The Dual-tree Complex Wavelet Transform.” IEEE Signal Processing Magazine 22 (6): 123–151. doi:10.1109/MSP.2005.1550194.
  • Şendur, L., and I. W. Selesnick. 2002. “Bivariate Shrinkage Functions for Wavelet-based Denoising Exploiting Interscale Dependency.” IEEE Transactions on Signal Processing 50 (11): 2744–2756. doi:10.1109/TSP.2002.804091.
  • Shan, D., G. Cao, and H. Dong. 2013. “LGMS-FOA: An Improved Fruit Fly Optimization Algorithm for Solving Optimization Problems.” Mathematical Problems in Engineering 2013: 1–9. doi:10.1155/2013/108768.
  • Simi, V. R., D. R. Edla, J. Joseph, and V. Kuppili (2019). Prospect of Stein’s Unbiased Risk Estimate as Objective Function for Parameter Optimization in Image Denoising Algorithms - A Case Study on Gaussian Smoothing Kernel. 2019 International Conference on Data Science and Engineering, ICDSE 2019, 149–153, Patna, India. 10.1109/ICDSE47409.2019.8971487
  • Sivaranjani, R., S. M. M. Roomi, and M. Senthilarasi. 2019. “Speckle Noise Removal in SAR Images Using Multi-Objective PSO (MOPSO) Algorithm.” Applied Soft Computing Journal 76: 671–681. doi:10.1016/j.asoc.2018.12.030.
  • Starck, J. L., J. Fadili, and F. Murtagh. 2007. “The Undecimated Wavelet Decomposition and Its Reconstruction.” IEEE Transactions on Image Processing 16 (2): 297–309. doi:10.1109/TIP.2006.887733.
  • Suresh, S., and S. Lal. 2017. “Two-Dimensional CS Adaptive FIR Wiener Filtering Algorithm for the Denoising of Satellite Images.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10 (12): 5245–5257. doi:10.1109/JSTARS.2017.2755068.
  • Toda, H., and Z. Zhang. 2017. “Hilbert Transform Pairs Oforthonormal Bases of Chromatic-scale Wavelets.” International Conference on Wavelet Analysis and Pattern Recognition 1 (7): 115–121. doi:10.1109/ICWAPR.2017.8076674.
  • Tomassi, D., D. Milone, and J. D. B. Nelson. 2015. “Wavelet Shrinkage Using Adaptive Structured Sparsity Constraints.” Signal Processing 106: 73–87. doi:10.1016/j.sigpro.2014.07.001.
  • Vimalraj, C., S. Esakkirajan, and P. Sreevidya (2018). DTCWT with Fuzzy Based Thresholding for Despeckling of Ultrasound Images. 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies, ICICICT 2017, 2018-Janua, 515–519, Kerala, India. 10.1109/ICICICT1.2017.8342616
  • Wang, J., T. Zheng, P. Lei, and X. Bai. 2018. “Ground Target Classification in Noisy SAR Images Using Convolutional Neural Networks.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11 (11): 4180–4192. doi:10.1109/JSTARS.2018.2871556.
  • Wang, P., H. Zhang, and V. M. Patel. 2017. “SAR Image Despeckling Using a Convolutional Neural Network.” IEEE Signal Processing Letters 24 (12): 1763–1767. doi:10.1109/LSP.2017.2758203.
  • Xu, Z., H. C. Li, Q. Shi, H. Wang, M. Wei, J. Shi, and Y. Shao. 2019. “Effect Analysis and Spectral Weighting Optimization of Sidelobe Reduction on SAR Image Understanding.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12 (9): 3434–3444. doi:10.1109/JSTARS.2019.2925420.
  • Yuan, Y., J. Guan, and J. Sun. 2019. “Blind SAR Image Despeckling Using Self-supervised Dense Dilated Convolutional Neural Network.” ArXiv (v1): 1–12.
  • Yue, D.-X., F. Xu, A. C. Frery, and Y.-Q. Jin (2019). SAR Image Generation with Semantic-Statistical Convolution. IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, 9999–10002, Yokohama, Japan. 10.1109/igarss.2019.8900225
  • Zhai, J., X. Dang, F. Chen, X. Xie, Y. Zhu, and H. Yin (2019). SAR Image Generation Using Structural Bayesian Deep Generative Adversarial Network. 2019 Photonics and Electromagnetics Research Symposium - Fall, PIERS - Fall 2019 - Proceedings, 1386–1392, Xiamen, China. 10.1109/PIERS-Fall48861.2019.9021403
  • Zhang, Q., Q. Yuan, J. Li, Z. Yang, and X. Ma. 2018. “Learning a Dilated Residual Network for SAR Image Despeckling.” Remote Sensing 10 (2): 1–18. doi:10.3390/rs10020196.
  • Zhou, F., L. Wang, X. Bai, and Y. Hui. 2018. “SAR ATR of Ground Vehicles Based on LM-BN-CNN.” IEEE Transactions on Geoscience and Remote Sensing 56 (12): 7282–7293. doi:10.1109/TGRS.2018.2849967.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.