776
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Estimating canopy height change using machine learning by coupling WorldView-2 stereo imagery with Landsat-7 data

ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Abdalati, W., H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D. Harding, et al. (2010). The ICESat-2 Laser Altimetry Mission. Proceedings of the IEEE, 98, 735–751.
  • Aguilar, M. A., M. Del Mar Saldaña, F. J. Aguilar, and A. G. Lorca. 2014. “Comparing Geometric and Radiometric Information from GeoEye-1 and WorldView-2 Multispectral Imagery.” European Journal of Remote Sensing 47: 717–738. doi:10.5721/EuJRS20144741.
  • Ahmed, O. S., S. E. Franklin, M. A. Wulder, and J. C. White. 2015. “Characterizing Stand-Level Forest Canopy Cover and Height Using Landsat Time Series, Samples of Airborne LiDar, and the Random Forest Algorithm.” Isprs Journal of Photogrammetry and Remote Sensing 101: 89–101. doi:10.1016/j.isprsjprs.2014.11.007.
  • Banin, L., R. Feldpausch, O. L. Phillips, T. R. Baker, J. Lloyd, K. Affum-Baffoe, E. J. M. M. Arets, et al. 2012. “What Controls Tropical Forest Architecture? Testing Environmental, Structural and Floristic Drivers.” Global Ecology and Biogeography 21 (12): 1179–1190. doi:10.1111/j.1466-8238.2012.00778.x.
  • Brosofske, K. D., R. E. Froese, M. J. Falkowski, and A. Banskota. 2014. “A Review of Methods for Mapping and Prediction of Inventory Attributes for Operational Forest Management.” Forest Science 60 (4): 733–756. doi:10.5849/forsci.12-134.
  • Chen, Y., W. Shen, S. Gao, K. Zhang, J. Wang, and N. Huang. 2019. “Estimating Deciduous Broadleaf Forest Gross Primary Productivity by Remote Sensing Data Using a Random Forest Regression Model.” Journal of Applied Remote Sensing 13 (3): 038502. doi:10.1117/1.JRS.13.038502.
  • DeWitt, J. D., T. A. Warner, P. G. Chirico, and S. E. Bergstresser. 2017. “Creating High-Resolution Bare-Earth Digital Elevation Models (DEMs) from Stereo Imagery in an Area of Densely Vegetated Deciduous Forest Using Combinations of Procedures Designed for Lidar Point Cloud Filtering.” GIScience & Remote Sensing 54: 552–572. doi:10.1080/15481603.2017.1295514.
  • Eckert, S., and T. Hollands. 2010. “Comparison of Automatic DSM Generation Modules by Processing IKONOS Stereo Data of an Urban Area.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 3 (2): 162–167. doi:10.1109/JSTARS.2010.2047096.
  • Goldbergs, G., S. W. Mainer, S. R. Levick, and A. Edwards. 2019. “Limitations of High Resolution Satellite Stereo Imagery for Estimating Canopy Height in Australian Tropical Savannas.” International Journal of Applied Earth Observation and Geoinformation 75: 83–95. doi:10.1016/j.jag.2018.10.021.
  • Hirschmüller, H. 2008. “Stereo Processing by Semiglobal Matching and Mutual Information.” IEEE Transactions on Pattern Analysis and Machine Intelligence 30 (2): 328–341. doi:10.1109/TPAMI.2007.1166.
  • Hobi, M. L., and C. Ginzler. 2012. “Accuracy Assessment of Digital Surface Models Based on WorldView-2 and ADS80 Stereo Remote Sensing Data.” Sensors 12: 6347–6368. doi:10.3390/s120506347.
  • Hyde, P., R. Dubayah, W. Walker, J. B. Blair, M. Hofton, and C. Hunsaker. 2006. “Mapping Forest Structure for Wildlife Habitat Analysis Using Multi-Sensor (LiDar, SAR/InSar, ETM+, Quickbird) Synergy.” Remote sensing of environment 102 (1–2): 63–73. doi:10.1016/j.rse.2006.01.021.
  • Immitzer, M., C. Stepper, S. Böck, C. Straub, and C. Atzberger. 2016. “Use of WorldView-2 Stereo Imagery and National Forest Inventory Data for Wall-To-Wall Mapping of Growing Stock.” Forest Ecology and Management 359: 232–246. doi:10.1016/j.foreco.2015.10.018.
  • Lefsky, M. A. 2010. “A Global Forest Canopy Height Map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System.” Geophysical Research Letters 37: L15401. doi:10.1029/2010GL043622.
  • Li, W., Z. Niu, R. Shang, Y. Qin, L. Wang, and H. Chen. 2020. “High-Resolution Mapping of Forest Canopy Height Using Machine Learning by Coupling ICESat-2 LiDar with Sentinel-1, Sentinel-2 and Landsat-8 Data.” International Journal of Applied Earth Observation and Geoinformation 92: 102163. doi:10.1016/j.jag.2020.102163.
  • Li, Y., A. Hyder, L. T. Southerland, G. Hammond, A. Porr, and H. J. Miller. 2020. “311 Service Requests as Indicators of Neighborhood Distress and Opioid Use Disorder.” Scientific reports 10: 19579. doi:10.1038/s41598-020-76685-z.
  • Li, Y., and Y. Xie. 2018. “A New Urban Typology Model Adapting Data Mining Analytics to Examine Dominant Trajectories of Neighborhood Change: A Case of Metro Detroit.” Annals of the American Association of Geographers 108 (5): 1313–1337. doi:10.1080/24694452.2018.1433016.
  • Maimaitijiang, M., V. Sagan, P. Sidike, M. Maimaitiyiming, S. Hartling, K. T. Peterson, M. J. W. Michael Maw, N. Shakoor, T. Mockler, and F. B. Fritschi. 2019. “Vegetation Index Weighted Canopy Volume Model (CVMVI) for Soybean Biomass Estimation from Unmanned Aerial System-Based RGB Imagery.” Isprs Journal of Photogrammetry and Remote Sensing 151: 27–41. doi:10.1016/j.isprsjprs.2019.03.003.
  • Nelson, R., W. Krabill, and J. Tonelli. 1988. “Estimating Forest Biomass and Volume Using Airborne Laser Data.” Remote Sensing of Environment 24: 247–267. doi:10.1016/0034-4257(88)90028-4.
  • Persson, H. J., and R. Perko. 2016. “Assessment of Boreal Forest Height from WorldView-2 Satellite Stereo Images.” Remote Sensing Letters 7: 1150–1159. doi:10.1080/2150704X.2016.1219424.
  • Qin, R. 2016. “Rpc Stereo Processor (Rsp) – a Software Package for Digital Surface Model and Orthophoto Generation from Satellite Stereo Imagery.” ISPRS Annals Photogrammetry, Remote Sensing and Spatial Information Science III-1: 77–82. doi:10.5194/isprs-annals-III-1-77-2016.
  • Saldaña, M. M., M. A. Aguilar, F. J. Aguilar, and I. Fernández. 2012. “DSM Extraction and Evaluation from GeoEye-1 Stereo Imagery.” XXII Congress of the International Society for Photogrammetry and Remote Sensing I-4: 113–118. doi:10.5194/isprsannals-I-4-113-2012.
  • Schaefer, M. T., and D. W. Lamb. 2016. “A Combination of Plant NDVI and LiDar Measurements Improve the Estimation of Pasture Biomass in Tall Fescue (Festuca Arundinacea Var. Fletcher).” Remote Sensing 8 (2): 109. doi:10.3390/rs8020109.
  • Shean, D. E., O. Alexandrov, Z. M. Moratto, B. E. Smith, I. R. Joughin, C. Porter, and P. Morin. 2016. “An Automated, Open-Source Pipeline for Mass Production of Digital Elevation Models (DEMs) from Very-High-Resolution Commercial Stereo Satellite Imagery.” Isprs Journal of Photogrammetry and Remote Sensing 116: 101–117. doi:10.1016/j.isprsjprs.2016.03.012.
  • Simard, M., N. Pinto, J. B. Fisher, and A. Baccini. 2011. “Mapping Forest Canopy Height Globally with Spaceborne Lidar.” Journal of Geophysical Research: Biogeosciences 116: G04021. doi:10.1029/2011JG001708.
  • Solvin, T. M., S. Puliti, and A. Steffenrem. 2020. “Use of UAV Photogrammetric Data in Forest Genetic Trials: Measuring Tree Height, Growth, and Phenology in Norway Spruce (Picea Abies L. Karst.).” Scandinavian Journal of Forest Research 35 (7): 322–333. doi:10.1080/02827581.2020.1806350.
  • St-Onge, B., Y. Hu, and C. Vega. 2008. “Mapping the Height and Above-Ground Biomass of a Mixed Forest Using Lidar and Stereo Ikonos Images.” International Journal of Remote Sensing 29 (5): 1277–1294. doi:10.1080/01431160701736505.
  • Stojanova, D., P. Panov, V. Gjorgjioski, A. Kobler, and S. Džeroski. 2010. “Estimating Vegetation Height and Canopy Cover from Remotely Sensed Data with Machine Learning.” Ecological informatics 5 (4): 255–256. doi:10.1016/j.ecoinf.2010.03.004.
  • Straub, C., J. Tian, R. Seitz, and P. Reinartz. 2013. “Assessment of Cartosat-1 and WorldView-2 Stereo Imagery in Combination with a LiDar-DTM for Timber Volume Estimation in a Highly Structured Forest in Germany.” Forestry 86: 463–473. doi:10.1093/forestry/cpt017.
  • Tian, H., T. Chen, Q. Li, Q. Mei, S. Wang, M. Yang, Y. Wang, and Y. Qin. 2022. “A Novel Spectral Index for Automatic Canola Mapping by Using Sentinel-2 Imagery.” Remote Sensing 14: 1113. doi:10.3390/rs14051113.
  • Tian, J., S. Cui, and P. Reinartz. 2014. “Building Change Detection Based on Satellite Stereo Imagery and Digital Surface Models.” IEEE Transactions on Geoscience and Remote Sensing 52: 406–417. doi:10.1109/TGRS.2013.2240692.
  • Tian, J., A. A. Nielsen, and P. Reinartz. 2014. “Improving Change Detection in Forest Areas Based on Stereo Panchromatic Imagery Using Kernel MNF.” IEEE Transactions on Geoscience and Remote Sensing 52: 7130–7139. doi:10.1109/TGRS.2014.2308012.
  • Tian, J., T. Schneider, C. Straub, F. Kugler, and P. Reinartz. 2017. “Exploring Digital Surface Models from Nine Different Sensors for Forest Monitoring and Change Detection.” Remote Sensing 9: 287. doi:10.3390/rs9030287.
  • Toutin, T. 2002. “Three-Dimensional Topographic Mapping with ASTER Stereo Data in Rugged Topography.” IEEE Transactions on Geoscience and Remote Sensing 40: 2241–2247. doi:10.1109/TGRS.2002.802878.
  • Ullah, S., M. Dees, P. Datta, P. Adler, T. Saeed, M. S. Khan, and B. Koch. 2020. “Comparing the Potential of Stereo Aerial Photographs, Stereo Very High-Resolution Satellite Images, and TanDem-X for Estimating Forest Height.” International Journal of Remote Sensing 41 (18): 6976–6992. doi:10.1080/01431161.2020.1752414.
  • Zhang, J., S. E. Nielsen, L. Mao, S. Chen, J. C. Svenning, and M. McGlone. 2016. “Regional and Historical Factors Supplement Current Climate in Shaping Global Forest Canopy Height.” The Journal of Ecology 104 (2): 469–478. doi:10.1111/1365-2745.12510.
  • Zhang, L., and A. Gruen. 2006. “Multi-Image Matching for DSM Generation from IKONOS Imagery.” Isprs Journal of Photogrammetry and Remote Sensing 60 (3): 195–211. doi:10.1016/j.isprsjprs.2006.01.001.
  • Zhao, K., S. Popescu, X. Meng, Y. Pang, and M. Agca. 2011. “Characterizing Forest Canopy Structure with Lidar Composite Metrics and Machine Learning.” Remote Sensing of Environment 115 (8): 1978–1996. doi:10.1016/j.rse.2011.04.001.
  • Zhou, Y., B. Parsons, J. R. Elliott, I. Barisin, and R. T. Walker. 2015. “Assessing the Ability of Pleiades Stereo Imagery to Determine Height Changes in Earthquakes: A Case Study for the El Mayor-Cucapah Epicentral Area.” Journal of Geophysical Research: Solid Earth 120 (12): 8793–8808. doi:10.1002/2015JB012358.