251
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Spatial-temporal analysis of coal fire risk identification and suppression assessment with satellite time series mapping 2013-2020 in Midong coalfield, Xinjiang, China

, , ORCID Icon, &
Pages 2236-2272 | Received 30 Jan 2023, Accepted 23 Mar 2023, Published online: 20 Apr 2023

References

  • Abbas, M. R., B. B. Ahmad, and T. R. Abbas. 2014. “Use MODIS Satellite Data to Study New Phenomena of Underground Fire in the Al Ruhban Oasis in Al Najaf City, Iraq.” Environmental Earth Sciences 73 (7): 1–11. doi:10.1007/s12665-014-3632-8.
  • Ani, L. 2007. “Satellite Images Classification Based Fractal Features.” Journal of Al-Nahrain University 1 (10): 79–83. doi:10.22401/JNUS.10.1.14.
  • Anselin, L. 1995. “Local Indicator of Spatial Association - LISA.” Geographical Analysis 27 (2): 93–115. doi:10.1111/j.1538-4632.1995.tb00338.x.
  • Bao, X. 2021. “Analysis on Results of the Fifth Coalfield Fire Area Survey in Xinjiang.” China Energy and Environmental Protection 43 (2): 4.
  • Barsi, J. A., J. L. Barker, and J. R. Schott. 2003. “An Atmospheric Correction Parameter Calculator for a Single Thermal Band Earth-Sensing Instrument.“ IEEE International Geoscience and Remote Sensing Symposium 5: 3014–3016. doi:10.1109/IGARSS.2003.1294665.
  • Biswal, S. S., and A. K. Gorai. 2020. “Change Detection Analysis in Coverage Area of Coal Fire from 2009 to 2019 in Jharia Coalfield Using Remote Sensing Data.” International Journal of Remote Sensing 41 (24): 9545–9564. doi:10.1080/01431161.2020.1800128.
  • Biswal, S. S., and A. K. Gorai. 2021. “Studying the Coal Fire Dynamics in Jharia Coalfield, India Using Time-Series Analysis of Satellite Data.” Remote Sensing Applications: Society and Environment 3/W8: 100591. doi:10.1016/j.rsase.2021.100591.
  • Biswal, R., Raval, S. Gorai, and A. K. Gorai. 2019. “Delineation and Mapping of Coal Mine Fire Using Remote Sensing Data – a Review.” International Journal of Remote Sensing 40 (17): 6499–6529. doi:10.1080/01431161.2018.1547455.
  • Bondur, V. G. 2010. “Importance of Aerospace Remote Sensing Approach to the Monitoring of Nature Fire in Russia.” International Forest Fire News 40: 43–57.
  • Burt, J. E., G. M. Barber, and D. L. Rigby. 2009. Elementary Statistics for Geographers. 3rd Edition. New York: Guilford Press.
  • Chen, X., J. Peng, Z. Song, Y. Zheng, and B. Zhang. 2022. “Monitoring Persistent Coal Fire Using Landsat Time Series Data from 1986 to 2020.” IEEE Transactions on Geoscience and Remote Sensing 60: 1–16. doi:10.1109/TGRS.2022.3142350.
  • Deng, J., S. Ge, H. Qi, F. Zhou, and B. Shi. 2021. “Underground Coal Fire Emission of Spontaneous Combustion, Sandaoba Coalfield in Xinjiang, China: Investigation and Analysis.” The Science of the Total Environment 777: 146080. doi:10.1016/j.scitotenv.2021.146080.
  • Deng, J., F. Zhou, B. Shi, J. L. Torero, H. Qi, P. Liu, S. Ge, Z. Wang, and C. Chen. 2020. “Waste Heat Recovery, Utilization and Evaluation of Coalfield Fire Applying Heat Pipe Combined Thermoelectric Generator in Xinjiang, China.” Energy 207: 118303. doi:10.1016/j.energy.2020.118303.
  • Du, X., S. Bernardes, D. Cao, T. Jordan, Z. Yan, G. Yang, and Z. Li. 2015. “Self-Adaptive Gradient-Based Thresholding Method for Coal Fire Detection Based on ASTER Data—part 2, Validation and Sensitivity Analysis.” Remote Sensing 7 (3): 2602. doi:10.3390/rs70302602.
  • Du, X., D. Cao, D. Mishra, S. Bernardes, T. Jordan, and M. Madden. 2015. “Self-Adaptive Gradient-Based Thresholding Method for Coal Fire Detection Using ASTER Thermal Infrared Data, Part I: Methodology and Decadal Change Detection.” Remote Sensing 7 (6): 6576–6610. doi:10.3390/rs70606576.
  • Farhadinejad, T., S. Darvishi, M. Aliabadi, and A. Asgari. 2021. “Separation of Au, Ag, As, Cd, Cu, Hg, Mo and Sb Geochemical Anomalies Using the Concentration-Number (C-N) Fractal and Classical Statistical Models in Nahavand 1: 100,000 Sheet, Iran.” Arabian Journal of Geosciences 14 (5): 346. doi:10.1007/s12517-021-06563-z.
  • Gangopadhyay, P. K., K. Lahiri-Dutt, and K. Saha. 2006. “Application of Remote Sensing to Identify Coalfires in the Raniganj Coalbelt, India.” International Journal of Applied Earth Observations & Geoinformation 8 (3): 188–195. doi:10.1016/j.jag.2005.09.001.
  • García-Santos, V., J. Cuxart, D. Martínez-Villagrasa, M. Jiménez, and G. Simó. 2018. “Comparison of Three Methods for Estimating Land Surface Temperature from Landsat 8-TIRS Sensor Data.” Remote Sensing 10 (9): 1450. doi:10.3390/rs10091450.
  • Gautam, R. S., D. Singh, and A. Mittal. 2008. “An Efficient Contextual Algorithm to Detect Subsurface Fires with NOAA/AVHRR Data.” IEEE Transactions on Geoscience & Remote Sensing 46 (7): 2005–2015. doi:10.1109/TGRS.2008.916631.
  • Guha, A., K. V. Kumar, and M. V. V. Kamaraju. 2008. “A Satellite-Based Study of Coal Fires and Open-Cast Mining Activity in Raniganj Coalfield, West Bengal.” Current Science 95 (11): 1603–1607.
  • Heffern, E. L., and D. A. Coates. 2004. “Geologic History of Natural Coal-Bed Fires, Powder River Basin, USA.” International Journal of Coal Geology 59 (1): 25–47. doi:10.1016/j.coal.2003.07.002.
  • Huo, H., X. Jiang, X. Song, Z. -L. Li, Z. Ni, and C. Gao. 2014. “Detection of Coal Fire Dynamics and Propagation Direction from Multi-Temporal Nighttime Landsat SWIR and TIR Data: A Case Study on the Rujigou Coalfield, Northwest (NW) China.” Remote Sensing 6 (2): 1234–1259. doi:10.3390/rs6021234.
  • Huo, H., Z. Ni, C. Gao, E. Zhao, Y. Zhang, Y. Lian, H. Zhang, et al. 2015. “A Study of Coal Fire Propagation with Remotely Sensed Thermal Infrared Data.” Remote Sensing 7 (3): 3088–3113. doi:10.3390/rs70303088.
  • Jiang, W., K. Jia, Z. Chen, Y. Deng, and P. Rao. 2017. “Using Spatiotemporal Remote Sensing Data to Assess the Status and Effectiveness of the Underground Coal Fire Suppression Efforts During 2000–2015 in Wuda, China.” Journal of Cleaner Production 142 (PT.2): 565–577. doi:10.1016/j.jclepro.2016.03.082.
  • Jiang, W., X. Zhu, J. Wu, L. Gu, G. Ma, and X. Liu. 2011. “Retrieval and Analysis of Coal Fire Temperature in Wuda Coalfield, Inner Mongolia, China.” Chinese Geographical Science 21 (2): 159–166. doi:10.1007/s11769-011-0455-3.
  • Jimenez-Munoz, J. C., J. Cristobal, J. A. Sobrino, G. Soria, M. Ninyerola, X. Pons, and X. Pons. 2009. “Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval from Landsat Thermal-Infrared Data.” IEEE Transactions on Geoscience and Remote Sensing 47 (1): 339–349. doi:10.1109/TGRS.2008.2007125.
  • Jimenez-Munoz, J. C., J. A. Sobrino, D. Skokovic, C. Mattar, and J. Cristobal. 2014. “Land Surface Temperature Retrieval Methods from Landsat-8 Thermal Infrared Sensor Data.” Geoscience and Remote Sensing Letters, IEEE 11 (10): 1840–1843. doi:10.1109/LGRS.2014.2312032.
  • Kong, B., Z. Li, E. Wang, W. Lu, L. Chen, and G. Qi. 2018. “An Experimental Study for Characterization the Process of Coal Oxidation and Spontaneous Combustion by Electromagnetic Radiation Technique.” Process Safety and Environmental Protection 119: 285–294. doi:10.1016/j.psep.2018.08.002.
  • Kuenzer, C., J. Zhang, J. Li, S. Voigt, H. Mehl, and W. Wagner. 19 2007. “Detecting Unknown Coal Fires: Synergy of Automated Coal Fire Risk Area Delineation and Improved Thermal Anomaly Extraction.” International Journal of Remote Sensing 28 (20): 4561–4585. doi:10.1080/01431160701250432.
  • Künzer, C., J. Zhang, A. Hirner, B. Yang, and Y. Sun. 2008. “Multitemporal in-Situ Mapping of the Wuda Coal Fires from 2000 to 2005 – Assessing Coal Fire Dynamics. Spontaneous Coal Seam Fires: Mitigating a Global Disaster.” ERSEC Ecological Book Series.
  • Lantzanakis, G., Z. Mitraka, and N. Chrysoulakis. 2017. “Comparison of Physically and Image Based Atmospheric Correction Methods for Sentinel-2 Satellite Imagery.“ Fourth International Conference on Remote Sensing and Geoinformation of the Environmen. Heraklion, Greece. doi:10.1117/12.2242889.
  • Li, F., J. Li, X. Liu, and X. Meng. 2020. “Coal Fire Detection and Evolution of Trend Analysis Based on CBERS-04 Thermal Infrared Imagery.” Environmental Earth Sciences 79 (16): 1–15. doi:10.1007/s12665-020-09125-w.
  • Liu, L., and F. Zhou. 2010. “A Comprehensive Hazard Evaluation System for Spontaneous Combustion of Coal in Underground Mining.” International Journal of Coal Geology 82 (1): 27–36. doi:10.1016/j.coal.2010.01.014.
  • Mishra, R. K., P. Roy, J. Pandey, A. Khalkho, and V. K. Singh. 2014. “Study of Coal Fire Dynamics of Jharia Coalfield Using Satellite Data.” International Journal of Geomatics & Geosciences 4 (3): 477–484.
  • Mujawdiya, R., R. S. Chatterjee, and D. Kumar. 2022. “MODIS Land Surface Temperature Time Series Decomposition for Detecting and Characterizing Temporal Intensity Variations of Coal Fire Induced Thermal Anomalies in Jharia Coalfield, India.” Geocarto International 37 (8): 2160–2174. doi:10.1080/10106049.2020.1818853.
  • Nguyen, T. T., and T. D. Vu. 2019. “Use of Hot Spot Analysis to Detect Underground Coal Fires from Landsat-8 TIRS Data: A Case Study in the Khanh Hoa Coal Field, North-East of Vietnam.” The Environment and Natural Resources Journal 17 (3): 1–10. doi:10.32526/ennrj.17.3.2019.17.
  • Ord, J. K., and A. Getis. 1995. “Local Spatial Autocorrelation Statistics: Distributional Issues and an Application.” Geographical Analysis 27 (4): 286–306. doi:10.1111/j.1538-4632.1995.tb00912.x.
  • Praveen, B., and D. Gupta. 2017. “Multispectral-TIR Data Analysis by Split-Window Algorithm for Coal Fire Detection and Monitoring.” International Journal of Humanities and Social Science Invention 6 (4): 33–37.
  • Qin, Z., A. Karnieli, and P. Berliner. 2001. “A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data and Its Application to the Israel-Egypt Border Region.” International Journal of Remote Sensing 22 (18): 3719–3746. doi:10.1080/01431160010006971.
  • Raju, A., R. P. Gupta, and A. Prakash. 2013. “Delineation of Coalfield Surface Fires by Thresholding Landsat TM-7 Day-Time Image Data.” Geocarto International 28 (4): 343–363. doi:10.1080/10106049.2012.710651.
  • Richards, J. A. 2013. Feature Reduction. Remote Sensing Digital Image Analysis: An Introduction, 343–380. Berlin Heidelberg, Berlin, Heidelberg: Springer.
  • Ripley, B. D., A. D. Cliff, and J. K. Ord. 1984. “Spatial Processes, Models and Applications.” Journal of the American Statistical Association 79 (385): 238. doi:10.2307/2288381.
  • Roy, P., A. Guha, and K. V. Kumar. 2015. “Structural Control on Occurrence and Dynamics of Coalmine Fires in Jharia Coalfield: A Remote Sensing Based Analysis.” Journal of the Indian Society of Remote Sensing 43 (4): 779–786. doi:10.1007/s12524-015-0451-7.
  • Sampurno, J., R. Adriat, and W. Srigutomo, 2018. “Fractal Analysis of Land Surface Temperature for Geothermal and Non-Geothermal Sites Characterization.“ Journal of Physics: Conference Series. 1028: 12198. doi:10.1088/1742-6596/1028/1/012198.
  • Sobrino, J. A., J. C. Jimenez-Munoz, G. Soria, M. Romaguera, L. Guanter, J. Moreno, A. Plaza, and P. Martinez. 2008. “Land Surface Emissivity Retrieval from Different VNIR and TIR Sensors.” IEEE Transactions on Geoscience & Remote Sensing 46 (2): 316–327. doi:10.1109/TGRS.2007.904834.
  • Song, Z., and C. Kuenzer. 2014. “Coal Fires in China Over the Last Decade: A Comprehensive Review.” International Journal of Coal Geology 133: 72–99. doi:10.1016/j.coal.2014.09.004.
  • Song, Z., C. Kuenzer, H. Zhu, Z. Zhang, Y. Jia, Y. Sun, and J. Zhang. 2015. “Analysis of Coal Fire Dynamics in the Wuda Syncline Impacted by Fire-Fighting Activities Based on in-Situ Observations and Landsat-8 Remote Sensing Data.” International Journal of Coal Geology 141-142: 91–102. doi:10.1016/j.coal.2015.03.008.
  • Stracher, Glenn B., Ella Sokol, Prakash, Anupma, et al. 2007. “Coal Fires: Opportunity for Innovative Research in Mineralogy, Petrology, Structural Geology, and Environmental Science.”Annual meeting for the Geological Society of America. 28-31 October. Denver.
  • Su, H., F. Zhou, B. Shi, H. Qi, and J. Deng. 2020. “Causes and Detection of Coalfield Fires, Control Techniques, and Heat Energy Recovery: A Review.” International Journal of Minerals, Metallurgy and Materials 27 (3): 275–291. doi:10.1007/s12613-019-1947-x.
  • Syed, T. H., M. J. Riyas, and C. Kuenzer. 2018. “Remote Sensing of Coal Fires in India: A Review.” Earth-Science Reviews 187: 338–355. doi:10.1016/j.earscirev.2018.10.009.
  • Trinh, L. H., and V. R. Zablotskii. 2017. “The Application of LANDSAT Multi-Temporal Thermal Infrared Data to Identify Coal Fire in the Khanh Hoa Coal Mine, Thai Nguyen Province.” Vietnam Izvestiya Atmospheric & Oceanic Physics 53 (9): 1081–1087. doi:10.1134/S0001433817090183.
  • Vu, D., and T. Nguyen. 2021. “Spatial Pattern of Land Surface Temperatures and Its Relation to Underground Coal Fires in the Khanh Hoa Coal Field, North-East of Vietnam.” Arabian Journal of Geosciences 14 (3): 1–15. doi:10.1007/s12517-020-06433-0.
  • Vu, T. D. Tuyen, and T. T. Nguyen. 2018. “Spatio-Temporal Changes of Underground Coal Fires During 2008–2016 in Khanh Hoa Coal Field (North-East of Viet Nam) Using Landsat Time-Series Data.” Journal of Mountain Science 15 (12): 18. doi:10.1007/s11629-018-4997-z.
  • Willmott, C. J., S. M. Robeson, and K. Matsuura. 2012. “A Refined Index of Model Performance.” International Journal of Climatology 32 (13): 2088–2094. doi:10.1002/joc.2419.
  • Xue, Y., J. Liu, J. Li, C. Shang, J. Zhao, and M. Zhang. 2018. “Use of Landsat Thermal Imagery for Dynamically Monitoring Spontaneous Combustion of Datong Jurassic Coalfields in China.” Journal of Earth System Science 127 (4): 47. doi:10.1007/s12040-018-0952-1.
  • Xu, Y., H. Fan, and L. Dang. 2021. “Monitoring Coal Seam Fires in Xinjiang Using Comprehensive Thermal Infrared and Time Series InSar Detection.” International Journal of Remote Sensing 42 (6): 2220–2245. doi:10.1080/01431161.2020.1823045.
  • Yuan, G., Y. Wang, F. Zhao, T. Wang, L. Zhang, M. Hao, S. Yan, L. Dang, and B. Peng. 2021. “Accuracy Assessment and Scale Effect Investigation of UAV Thermography for Underground Coal Fire Surface Temperature Monitoring.” International Journal of Applied Earth Observation and Geoinformation 102: 102426. doi:10.1016/j.jag.2021.102426.
  • Yu, X., X. Guo, and Z. Wu. 2014. “Land Surface Temperature Retrieval from Landsat 8 Tirs—comparison Between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method.” Remote Sensing 6 (10): 9829–9852. doi:10.3390/rs6109829.
  • Yu, B., J. She, G. Liu, D. Ma, R. Zhang, Z. Zhou, and B. Zhang. 2022. “Coal Fire Identification and State Assessment by Integrating Multitemporal Thermal Infrared and InSar Remote Sensing Data: A Case Study of Midong District, Urumqi, China.” ISPRS Journal of Photogrammetry and Remote Sensing 190: 144–164. doi:10.1016/j.isprsjprs.2022.06.007.
  • Zeng, Q., J. Dong, and L. Zhao. 2018. “Investigation of the Potential Risk of Coal Fire to Local Environment: A Case Study of Daquanhu Coal Fire, Xinjiang Region, China.” The Science of the Total Environment 640-641: 1478–1488. doi:10.1016/j.scitotenv.2018.05.135.
  • Zhang, Y., S. R. Hu, T. Yue, X. Q. Zhang, M. D. Yu, and X. F. Li. 2014. “Environmental Effect Analysis of Coalfield Fire in Xinjiang and Its Preventive.” Advanced Materials Research 1010: 601–605. doi:10.4028/http://www.scientific.net/AMR.1010-1012.601.
  • Zhang, M., J. Wang, and S. Li. 2019. “Tempo-Spatial Changes and Main Anthropogenic Influence Factors of Vegetation Fractional Coverage in a Large-Scale Opencast Coal Mine Area from 1992 to 2015.” Journal of Cleaner Production 232: 940–952. doi:10.1016/j.jclepro.2019.05.334.
  • Zhou, S., K. Zhou, C. Yao, J. Wang, and J. Ding. 2015. “Exploratory Data Analysis and Singularity Mapping in Geochemical Anomaly Identification in Karamay, Xinjiang, China.” Journal of Geochemical Exploration 154: 171–179. doi:10.1016/j.gexplo.2014.12.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.