1,462
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Geostationary active fire products validation: GOES-17 ABI, GOES-16 ABI, and Himawari AHI

, ORCID Icon, , , , , & show all
Pages 3174-3193 | Received 03 Feb 2023, Accepted 19 May 2023, Published online: 06 Jun 2023

References

  • Baldassarre, G., L. Pozzoli, C. C. Schmidt, A. Unal, T. Kindap, W. P. Menzel, S. Whitburn, et al. 2015. “Using SEVIRI Fire Observations to Drive Smoke Plumes in the CMAQ Air Quality Model: A Case Study Over Antalya in 2008.” Atmospheric Chemistry & Physics 15 (14): 8539–8558. doi:10.5194/acp-15-8539-2015.
  • Davies, D. K., S. Ilavajhala, M. M. Wong, and C. O. Justice. 2008. “Fire Information for Resource Management System: Archiving and Distributing MODIS Active Fire Data.” IEEE Transactions on Geoscience & Remote Sensing 47 (1): 72–79. doi:10.1109/TGRS.2008.2002076.
  • DiMiceli, C. M., M. L. Carroll, R. A. Sohlberg, C. Huang, M. C. Hansen, and J. R. G. Townshend. 2017, V. 006. https://modis.gsfc.nasa.gov/data/dataprod/mod44.php. Last accessed 1/18/2023.
  • ESRI Disaster Response Program: “Wildfires”. 2021. https://www.esri.com/en-us/disaster-response/disasters/wildfires. Last accessed 1/18/2023.
  • Eva, H., and S. Flasse. 1996. “Contextual and Multiple‐Threshold Algorithms for Regional Active Fire Detection with AVHRR Data.” Remote Sensing Reviews 14 (4): 333–351.
  • Freeborn, P. H., M. J. Wooster, G. Roberts, B. D. Malamud, and W. Xu. 2009. “Development of a Virtual Active Fire Product for Africa Through a Synthesis of Geostationary and Polar-Orbiting Satellite Data.” Remote Sensing of Environment 113 (8): 1700–1711. doi:10.1016/j.rse.2009.03.013.
  • Freeborn, P. H., M. J. Wooster, G. Roberts, and W. Xu. 2014. “Evaluating the SEVIRI Fire Thermal Anomaly Detection Algorithm Across the Central African Republic Using the MODIS Active Fire Product.” Remote Sensing 6 (3): 1890–1917. doi:10.3390/rs6031890.
  • Giglio, L. 2007. “Characterization of the Tropical Diurnal Fire Cycle Using VIRS and MODIS Observations.” Remote Sensing of Environment 108 (4): 407–421. doi:10.1016/j.rse.2006.11.018.
  • Giglio, L., W. Schroeder, and C. O. Justice. 2016. “The Collection 6 MODIS Active Fire Detection Algorithm and Fire Products.” Remote Sensing of Environment 178: 31–41. doi:10.1016/j.rse.2016.02.054.
  • GOES-R. 2021. “Advanced Baseline Imager Scan Mode Information”. https://www.goes-r.gov/users/abiScanModeInfo.html. Last accessed 1/19/2023.
  • Hall, J. V., R. Zhang, W. Schroeder, C. Huang, and L. Giglio. 2019. “Validation of GOES-16 ABI and MSG SEVIRI Active Fire Products.” International Journal of Applied Earth Observation and Geoinformation 83: 101928. doi:10.1016/j.jag.2019.101928.
  • Hansen, M. C., R. S. DeFries, J. R. G. Townshend, L. Marufu, and R. Sohlberg. 2002. “Development of a MODIS Tree Cover Validation Data Set for Western Province, Zambia.” Remote Sensing of Environment 83: 320. doi:10.1016/S0034-4257(02)00080-9.
  • Justice, C. O., L. Giglio, S. Korontzi, J. Owens, J. T. Morisette, D. Roy, J. Descloitres, S. Alleaume, F. Petitcolin, and Y. Kaufman. 2002. “The MODIS Fire Products.” Remote Sensing of Environment 83: 244–262. doi:10.1016/S0034-4257(02)00076-7.
  • Lindley, T. T., A. B. Zwink, C. M. Gravelle, C. C. Schmidt, C. K. Palmer, S. T. Rowe, R. Heffernan, N. Driscoll, and G. M. Kent. 2020. “Ground-Based Corroboration of GOES-17 Fire Detection Capabilities During Ignition of the Kincade Fire.” Journal of Operational Meteorology 8 (8). doi:10.15191/nwajom.2020.0808.
  • Li, F., X. Zhang, D. Roy, and S. Kondragunta. 2019. “Estimation of Biomass-Burning Emissions by Fusing the Fire Radiative Power Retrievals from Polar-Orbiting and Geostationary Satellites Across the Conterminous United States.” Atmospheric Environment 211: 274–287. doi:10.1016/j.atmosenv.2019.05.017.
  • Millones, M., J. Rogan, B. L. Turner, B. Parmentier, R. Harris, and D. Griffith. 2017. “Fire Data as Proxy for Anthropogenic Landscape Change in the Yucatán.” Land 6 (3): 61. doi:10.3390/land6030061.
  • Mota, B., and M. J. Wooster. 2018. “A New Top-Down Approach for Directly Estimating Biomass Burning Emissions and Fuel Consumption Rates and Totals from Geostationary Satellite Fire Radiative Power (FRP).” Remote Sensing of Environment 206: 45–62. doi:10.1016/j.rse.2017.12.016.
  • Mueller, S., L. Tarnay, S. O’Neill, and S. Raffuse. 2020. “Apportioning Smoke Impacts of 2018 Wildfires on Eastern Sierra Nevada Sites.” Atmosphere 11 (9): 970. doi:10.3390/atmos11090970.
  • NOAA. 2019. “GOES-R Series Product Definition and Users’ Guide (No. 416- R- PUG- L2 Plus- 0349 Vol 5).” https://www.goes-r.gov/products/docs/PUG-L2+-vol5.pdf. Last accessed 1/20/2023.
  • Prins, E. M., J. M. Feltz, W. P. Menzel, and D. E. Ward. 1998. “An Overview of GOES-8 Diurnal Fire and Smoke Results for SCAR-B and 1995 Fire Season in South America.” Journal of Geophysical Research Atmospheres 103: 31821–31835. doi:10.1029/98JD01720.
  • Prins, E. M., and W. P. Menzel. 1992. “Geostationary Satellite Detection of Biomass Burning in South America.” International Journal of Remote Sensing 13: 2783–2799. doi:10.1080/01431169208904081.
  • Prins, E. M., J. Schmetz, L. P. Flynn, D. W. Hillger, and J. M. Feltz. 2001. “An Overview of Diurnal Active Fire Monitoring Using a Suite of International Geostationary Satellites. In Global and Regional Vegetation Monitoring from Space: Planning a Coordinated International Effort, edited byAhern, Frank, Goldammer, Johann, Justice, Christopher. Vol. 1, 145–170. 90-5103-140-8. The Netherlands: Kulger Publications.
  • Roberts, G. J., and M. J. Wooster. 2008. “Fire Detection and Fire Characterization Over Africa Using Meteosat SEVIRI.” IEEE Transactions on Geoscience & Remote Sensing 46 (4): 1200–1218. doi:10.1109/TGRS.2008.915751.
  • Roberts, G., M. J. Wooster, W. Xu, P. H. Freeborn, J. J. Morcrette, L. Jones, A. Benedetti, H. Jiangping, D. Fisher, and J. W. Kaiser. 2015. “LSA SAF Meteosat FRP Products–Part 2: Evaluation and Demonstration for Use in the Copernicus Atmosphere Monitoring Service (CAMS).” Atmospheric Chemistry & Physics 15 (22): 13241–13267. doi:10.5194/acp-15-13241-2015.
  • Schmidt, C. 2020. “Monitoring Fires with the GOES-R Series.” In The GOES-R Series, 145–163. Elsevier. doi:10.1016/B978-0-12-814327-8.00013-5.
  • Schmidt, C., J. Hoffman, E. Prins, and S. Lindstrom. 2020. “GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Fire/Hot Spot Characterization”. NOAA NESDIS CENTER for SATELLITE APPLICATIONS and RESEARCH. https://www.star.nesdis.noaa.gov/goesr/rework/documents/ATBDs/Enterprise/GOES-R_AWG_ATBD_Land_FIRE_v2.7_Oct2020.pdf. Last accessed 1/26/2023
  • Schmit, T. J. P., M. M. Griffith, J. M. Gunshor, S. J. Daniels, Goodman, W. Lebair, and S. J. Goodman. 2017. “A Closer Look at the ABI on the GOES-R Series.” Bulletin of the American Meteorological Society 98 (4): 681–698. doi:10.1175/BAMS-D-15-00230.1.
  • Schroeder, W., P. Oliva, L. Giglio, and I. A. Csiszar. 2014. “The New VIIRS 375 M Active Fire Detection Data Product: Algorithm Description and Initial Assessment.” Remote Sensing of Environment 143: 85–96. doi:10.1016/j.rse.2013.12.008.
  • Schroeder, W., P. Oliva, L. Giglio, B. Quayle, E. Lorenz, and F. Morelli. 2016. “Active Fire Detection Using Landsat-8/OLI Data.” Remote Sensing of Environment 185: 210–220. doi:10.1016/j.rse.2015.08.032.
  • Vetrita, Y., and M. A. Cochrane. 2020. “Fire Frequency and Related Land-Use and Land-Cover Changes in Indonesia’s Peatlands.” Remote Sensing 12 (1): 5. doi:10.3390/rs12010005.
  • Vosloo, H. F., A. Momberg, and I. T. Josephine. 2010. “Realtime Monitoring of the Transmission System”. Position IT, pp.55–61. https://www.ee.co.za/wp-content/uploads/legacy/EngineerIT%202011/engineerit%20august%202011_p46-49.pdf. Last Accessed 1/26/2023.
  • Wooster, M. J., G. Roberts, P. H. Freeborn, W. Xu, Y. Govaerts, R. Beeby, J. He, A. Lattanzio, D. Fisher, and R. Mullen. 2015. “LSA SAF Meteosat FRP Products – Part 1: Algorithms, Product Contents, and Analysis.” Atmospheric Chemistry & Physics 15: 13217–13239. doi:10.5194/acp-15-13217-2015.
  • Wooster, M. J., G. Roberts, L. Giglio, D. P. Roy, P. H. Freeborn, L. Boschetti, C. Justice, et al. 2021. “Satellite Remote Sensing of Active Fires: History and Current Status, Applications and Future Requirements.” Remote Sensing of Environment 267: 112694. doi:10.1016/j.rse.2021.112694.
  • Xu, W., M. J. Wooster, J. He, and T. Zhang. 2021. “Improvements in High-Temporal Resolution Active Fire Detection and FRP Retrieval Over the Americas Using GOES-16 ABI with the Geostationary Fire Thermal Anomaly (FTA) Algorithm.” Science of Remote Sensing 3: 100016. doi:10.1016/j.srs.2021.100016.
  • Xu, W., M. J. Wooster, T. Kaneko, J. He, T. Zhang, and D. Fisher. 2017. “Major Advances in Geostationary Fire Radiative Power (FRP) Retrieval Over Asia and Australia Stemming from Use of Himarawi-8 AHI.” Remote Sensing of Environment 193: 138–149. doi:10.1016/j.rse.2017.02.024.