254
Views
0
CrossRef citations to date
0
Altmetric
SI: Recent Advances in Quantitative Remote Sensing VI

A generalized method for retrieving global daily mean land surface temperature from polar-orbiting thermal infrared sensor instantaneous observations

, , , , , & ORCID Icon show all
Received 23 Mar 2023, Accepted 03 Jun 2023, Published online: 27 Jun 2023

References

  • Bright, R. M., E. Davin, T. O’Halloran, J. Pongratz, K. Zhao, and A. Cescatti. 2017. “Local Temperature Response to Land Cover and Management Change Driven by Non-Radiative Processes.” Nature Climate Change 7 (4): 296–302. https://doi.org/10.1038/nclimate3250.
  • Duan, S. B., Z. L. Li, and P. Leng. 2017. “A Framework for the Retrieval of All-Weather Land Surface Temperature at a High Spatial Resolution from Polar-Orbiting Thermal Infrared and Passive Microwave Data.” Remote Sensing of Environment 195:107–117. https://doi.org/10.1016/j.rse.2017.04.008.
  • Duan, S. B., Z. L. Li, H. Li, F. M. Göttsche, H. Wu, W. Zhao, P. Leng, X. Zhang, and C. Coll. 2019. “Validation of Collection 6 MODIS Land Surface Temperature Product Using in situ Measurements.” Remote Sensing of Environment 225:16–29. https://doi.org/10.1016/j.rse.2019.02.020.
  • Duan, S. B., Z. L. Li, B. H. Tang, H. Wu, R. Tang, Y. Bi, and G. Zhou. 2014. “Estimation of Diurnal Cycle of Land Surface Temperature at High Temporal and Spatial Resolution from Clear-Sky MODIS Data.” Remote Sensing 6 (4): 3247–3262. https://doi.org/10.3390/rs6043247.
  • Duan, S. B., Z. L. Li, N. Wang, H. Wu, and B. H. Tang. 2012. “Evaluation of Six Land-Surface Diurnal Temperature Cycle Models Using Clear-Sky in situ and Satellite Data.” Remote Sensing of Environment 124:15–25. https://doi.org/10.1016/j.rse.2012.04.016.
  • Ford, T. W., and S. M. Quiring. 2019. “Comparison of Contemporary in Situ, Model, and Satellite Remote Sensing Soil Moisture with a Focus on Drought Monitoring.” Water Resources Research 55 (2): 1565–1582. https://doi.org/10.1029/2018WR024039.
  • Göttsche, F. M., and F. S. Olesen. 2001. “Modelling of Diurnal Cycles of Brightness Temperature Extracted from METEOSAT Data.” Remote Sensing of Environment 76 (3): 337–348. https://doi.org/10.1016/S0034-4257/00/00214-5.
  • Guillevic, P. C., J. L. Privette, B. Coudert, M. A. Palecki, J. Demarty, C. Ottlé, and J. A. Augustine. 2012. “Land Surface Temperature Product Validation Using Noaa’s Surface Climate Observation Networks—Scaling Methodology for the Visible Infrared Imager Radiometer Suite (VIIRS).” Remote Sensing of Environment 124:282–298. https://doi.org/10.1016/j.rse.2012.05.004.
  • Hong, F., W. Zhan, F. M. Goettsche, J. Lai, Z. Liu, L. Hu, P. Fu, et al. 2021. “A Simple Yet Robust Framework to Estimate Accurate Daily Mean Land Surface Temperature from Thermal Observations of Tandem Polar Orbiters.” Remote Sensing of Environment 264:112612. https://doi.org/10.1016/j.rse.2021.112612.
  • Jiang, Y., X. G. Jiang, R. Tang, Z. L. Li, Y. Zhang, Z. X. Liu, and C. Huang. 2018. “Effect of Cloud Cover on Temporal Upscaling of Instantaneous Evapotranspiration.” Journal of Hydrologic Engineering 23 (4): 0501800. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001635.
  • Jiménez, C., C. Prigent, S. L. Ermida, and J. L. Moncet. 2017. “Inversion of AMSR‐E Observations for Land Surface Temperature Estimation: 1. Methodology and Evaluation with Station Temperature.” Journal of Geophysical Research: Atmospheres 122 (6): 3330–3347. https://doi.org/10.1002/2016JD026144.
  • Lian, Y., S. B. Duan, C. Huang, W. Han, and M. Liu. 2023. “Generation of Spatial-Seamless AMSR2 Land Surface Temperature in China During 2012–2020 Using a Deep Neural Network.” IEEE Transactions on Geoscience and Remote Sensing 61:5300618. https://doi.org/10.1109/TGRS.2023.3247806.
  • Li, J. H., Z. L. Li, X. Liu, and S. B. Duan. 2023. “A global historical twice-daily (daytime and nighttime) land surface temperature dataset produced by Advanced Very High Resolution Radiometer observations from 1981 to 2021.” Earth System Science Data 15: 2189–2212 . https://doi.org/10.5194/essd-15-2189-2023.
  • Li, H., R. Li, Y. Yang, B. Cao, Z. Bian, T. Hu, Y. Du, L. Sun, and Q. Liu. 2020. “Temperature-Based and Radiance-Based Validation of the Collection 6 MYD11 and MYD21 Land Surface Temperature Products Over Barren Surfaces in Northwestern China.” IEEE Transactions on Geoscience and Remote Sensing 59 (2): 1794–1807. https://doi.org/10.1109/TGRS.2020.2998945.
  • Li, Z. L., B. H. Tang, H. Wu, H. Ren, G. Yan, Z. Wan, I. F. Trigo, and J. A. Sobrino. 2013. “Satellite-Derived Land Surface Temperature: Current Status and Perspectives.” Remote Sensing of Environment 131:14–37. https://doi.org/10.1016/j.rse.2012.12.008.
  • Liu, Y., T. Hiyama, and Y. Yamaguchi. 2006. “Scaling of Land Surface Temperature Using Satellite Data: A Case Examination on ASTER and MODIS Products Over a Heterogeneous Terrain Area.” Remote Sensing of Environment 105 (2): 115–128. https://doi.org/10.1016/j.rse.2006.06.012.
  • Liu, X., Z. L. Li, J. H. Li, P. Leng, M. Liu, and M. Gao. 2023. “Temporal Upscaling of MODIS 1-Km Instantaneous Land Surface Temperature to Monthly Mean Value: Method Evaluation and Product Generation.” IEEE Transactions on Geoscience & Remote Sensing 61:5001214. https://doi.org/10.1109/TGRS.2023.3247428.
  • Liu, X., B. H. Tang, G. Yan, Z. L. Li, and S. Liang. 2019. “Retrieval of Global Orbit Drift Corrected Land Surface Temperature from Long-Term AVHRR Data.” Remote Sensing 11 (23): 2843. https://doi.org/10.3390/rs11232843.
  • Li, Z. L., H. Wu, S. B. Duan, W. Zhao, H. Ren, X. Liu, P. Leng, et al. 2023. “Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications.” Reviews of Geophysics 61 (1): e2022RG000777. https://doi.org/10.1029/2022RG000777.
  • Long, D., L. Yan, L. Bai, C. Zhang, X. Li, H. Lei, H. Yang, et al. 2020. “Generation of MODIS-Like Land Surface Temperatures Under All-Weather Conditions Based on a Data Fusion Approach.” Remote Sensing of Environment 246:111863. https://doi.org/10.1016/j.rse.2020.111863.
  • Ma, J., H. Shen, P. Wu, J. Wu, M. Gao, and C. Meng. 2022. “Generating Gapless Land Surface Temperature with a High Spatio-Temporal Resolution by Fusing Multi-Source Satellite-Observed and Model-Simulated Data.” Remote Sensing of Environment 278:113083. https://doi.org/10.1016/j.rse.2022.113083.
  • Ogawa, K., T. Schmugge, F. Jacob, and A. French. 2002. “Estimation of Broadband Land Surface Emissivity from Multi-Spectral Thermal Infrared Remote Sensing.” Agronomie 22 (6): 695–696. https://doi.org/10.1051/agro:2002055.
  • Ogawa, K., T. Schmugge, and S. Rokugawa. 2008. “Estimating Broadband Emissivity of Arid Regions and Its Seasonal Variations Using Thermal Infrared Remote Sensing.” IEEE Transactions on Geoscience and Remote Sensing 46 (2): 334–343. https://doi.org/10.1109/TGRS.2007.913213.
  • Ouyang, B., T. Che, L. Dai, and Z. Wang. 2012. “Estimating Mean Daily Surface Temperature Over the Tibetan Plateau Based on MODIS LST Products.” Journal of Glaciology & Geocryology 34 (2): 296–303. https://doi.org/10.7522/j.issn.1000-0240.2012.0036.
  • Prata, A. J., V. Caselles, C. Coll, J. A. Sobrino, and C. Ottle. 1995. “Thermal Remote Sensing of Land Surface Temperature from Satellites: Current Status and Future Prospects.” Remote Sensing Reviews 12 (3–4): 175–224. https://doi.org/10.1080/02757259509532285.
  • Quan, J., Y. Chen, W. Zhan, J. Wang, J. Voogt, and J. Li. 2014. “A Hybrid Method Combining Neighborhood Information from Satellite Data with Modeled Diurnal Temperature Cycles Over Consecutive Days.” Remote Sensing of Environment 155:257–274. https://doi.org/10.1016/j.rse.2014.08.034.
  • Rao, Y., S. Liang, D. Wang, Y. Yu, Z. Song, Y. Zhou, M. Shen, and B. Xu. 2019. “Estimating Daily Average Surface Air Temperature Using Satellite Land Surface Temperature and Top-Of-Atmosphere Radiation Products Over the Tibetan Plateau.” Remote Sensing of Environment 234:111462. https://doi.org/10.1016/j.rse.2019.111462.
  • Sánchez, N., Á. González-Zamora, J. Martínez-Fernández, M. Piles, and M. Pablos. 2018. “Integrated Remote Sensing Approach to Global Agricultural Drought Monitoring.” Agricultural and Forest Meteorology 259:141–153. https://doi.org/10.1016/j.agrformet.2018.04.022.
  • Si, M., Z. L. Li, F. Nerry, B. H. Tang, P. Leng, H. Wu, X. Zhang, and G. Shang. 2022. “Spatiotemporal Pattern and Long-Term Trend of Global Surface Urban Heat Islands Characterized by Dynamic Urban-Extent Method and MODIS Data.” ISPRS Journal of Photogrammetry and Remote Sensing 183:321–335. https://doi.org/10.1016/j.isprsjprs.2021.11.017.
  • Tang, R., and Z. L. Li. 2017. “Estimating Daily Evapotranspiration from Remotely Sensed Instantaneous Observations with Simplified Derivations of a Theoretical Model.” Journal of Geophysical Research: Atmospheres 122 (19): 10–177. https://doi.org/10.1002/2017JD027094.
  • Tomlinson, C. J., L. Chapman, J. E. Thornes, and C. Baker. 2011. “Remote Sensing Land Surface Temperature for Meteorology and Climatology: A Review.” Meteorological Applications 18 (3): 296–306. https://doi.org/10.1002/met.287.
  • Trigo, I. F., C. C. Dacamara, P. Viterbo, J. L. Roujean, F. Olesen, C. Barroso, F. Camacho-de-Coca, et al. 2011. “The Satellite Application Facility for Land Surface Analysis.” International Journal of Remote Sensing 32 (10): 2725–2744. https://doi.org/10.1080/01431161003743199.
  • Wan, Z., and J. Dozier. 1996. “A Generalized Split-Window Algorithm for Retrieving Land-Surface Temperature from Space.” IEEE Transactions on Geoscience and Remote Sensing 34 (4): 892–905. https://doi.org/10.1109/36.508406.
  • Wang, K., and S. Liang. 2009. “Evaluation of ASTER and MODIS Land Surface Temperature and Emissivity Products Using Long-Term Surface Longwave Radiation Observations at SURFRAD Sites.” Remote Sensing of Environment 113 (7): 1556–1565. https://doi.org/10.1016/j.rse.2009.03.009.
  • Williamson, S. N., D. S. Hik, J. A. Gamon, J. L. Kavanaugh, and G. E. Flowers. 2014. “Estimating Temperature Fields from MODIS Land Surface Temperature and Air Temperature Observations in a Sub-Arctic Alpine Environment.” Remote Sensing 6 (2): 946–963. https://doi.org/10.3390/rs6020946.
  • Xing, Z., Z. L. Li, S. B. Duan, X. Liu, X. Zheng, P. Leng, M. Gao, X. Zhang, and G. Shang. 2021. “Estimation of Daily Mean Land Surface Temperature at Global Scale Using Pairs of Daytime and Nighttime MODIS Instantaneous Observations.” Isprs Journal of Photogrammetry & Remote Sensing 178:51–67. https://doi.org/10.1016/j.isprsjprs.2021.05.017.
  • Xu, S., and J. Cheng. 2021. “A New Land Surface Temperature Fusion Strategy Based on Cumulative Distribution Function Matching and Multiresolution Kalman Filtering.” Remote Sensing of Environment 254:112256. https://doi.org/10.1016/j.rse.2020.112256.
  • Yu, Y., D. Tarpley, J. L. Privette, M. D. Goldberg, M. R. V. Raja, K. Y. Vinnikov, and H. Xu. 2008. “Developing Algorithm for Operational GOES-R Land Surface Temperature Product.” IEEE Transactions on Geoscience and Remote Sensing 47 (3): 936–951. https://doi.org/10.1109/TGRS.2008.2006180.
  • Zhang, C., D. Long, Y. Zhang, M. C. Anderson, W. P. Kustas, and Y. Yang. 2021. “A Decadal (2008–2017) Daily Evapotranspiration Data Set of 1 Km Spatial Resolution and Spatial Completeness Across the North China Plain Using TSEB and Data Fusion.” Remote Sensing of Environment 262:112519. https://doi.org/10.1016/j.rse.2021.112519.
  • Zhang, X., J. Zhou, S. Liang, L. Chai, D. Wang, and J. Liu. 2020. “Estimation of 1-Km All-Weather Remotely Sensed Land Surface Temperature Based on Reconstructed Spatial-Seamless Satellite Passive Microwave Brightness Temperature and Thermal Infrared Data.” ISPRS Journal of Photogrammetry and Remote Sensing 167:321–344. https://doi.org/10.1016/j.isprsjprs.2020.07.014.
  • Zhao, W., F. Wen, Q. Wang, N. Sanchez, and M. Piles. 2021. “Seamless Downscaling of the ESA CCI Soil Moisture Data at the Daily Scale with MODIS Land Products.” Journal of Hydrology 603:126930. https://doi.org/10.1016/j.jhydrol.2021.126930.
  • Zhou, J., Y. Chen, X. Zhang, and W. Zhan. 2013. “Modelling the Diurnal Variations of Urban Heat Islands with Multi-Source Satellite Data.” International Journal of Remote Sensing 34 (21): 7568–7588. https://doi.org/10.1080/01431161.2013.821576.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.