284
Views
0
CrossRef citations to date
0
Altmetric
Research article

A multi-objective comparison of CNN architectures in Arctic human-built infrastructure mapping from sub-meter resolution satellite imagery

ORCID Icon, , &
Pages 7670-7705 | Received 21 Aug 2023, Accepted 12 Nov 2023, Published online: 11 Dec 2023

References

  • “Alaska Geobotany Center - Organizations - Alaska Arctic Geoecological Atlas.” 2022. Accessed December 11. https://arcticatlas.geobotany.org/catalog/organization/aaga.
  • Ardelean, F., A. Onaca, M.-A. Chețan, A. Dornik, G. Georgievski, S. Hagemann, F. Timofte, and O. Berzescu. 2020. “Assessment of Spatio-Temporal Landscape Changes from VHR Images in Three Different Permafrost Areas in the Western Russian Arctic.” Remote Sensing 12 (23): 3999. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/rs12233999.
  • Aytekın, Ö., A. Erener, İ. Ulusoy, and Ş. Düzgün. 2012. “Unsupervised Building Detection in Complex Urban Environments from Multispectral Satellite Imagery.” International Journal of Remote Sensing 33 (7): 2152–2177. Taylor & Francis. https://doi.org/10.1080/01431161.2011.606852.
  • Badina, S. V. 2020. “Prediction of Socioeconomic Risks in the Cryolithic Zone of the Russian Arctic in the Context of Upcoming Climate Changes.” Studies on Russian Economic Development 31 (4): 396–403. https://doi.org/10.1134/S1075700720040036.
  • Bartsch, A., G. Pointner, T. Ingeman-Nielsen, and L. Wenjun. 2020. “Towards Circumpolar Mapping of Arctic Settlements and Infrastructure Based on Sentinel-1 and Sentinel-2.” Remote Sensing 12 (15): 2368. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/rs12152368.
  • Bartsch, A., G. Pointner, I. Nitze, A. Efimova, D. Jakober, S. Ley, E. Högström, G. Grosse, and P. Schweitzer. 2021. “Expanding Infrastructure and Growing Anthropogenic Impacts Along Arctic Coasts.” Environmental Research Letters 16 (11): 115013. https://doi.org/10.1088/1748-9326/ac3176.
  • Bergmann, B., and G. Hommel. 1988. “Improvements of General Multiple Test Procedures for Redundant Systems of Hypotheses.” In Multiple Hypothesenprüfung/Multiple Hypotheses Testing, edited by P. Bauer, G. Hommel, and E. Sonnemann, 100–115. Berlin, Heidelberg: Medizinische Informatik und Statistik. https://doi.org/10.1007/978-3-642-52307-6_8.
  • Biskaborn, B. K., S. L. Smith, J. Noetzli, H. Matthes, G. Vieira, D. A. Streletskiy, P. Schoeneich, et al. 2019. “Permafrost is Warming at a Global Scale.” Nature Communications 10 (1): 264. Nature Publishing Group. https://doi.org/10.1038/s41467-018-08240-4
  • Blaschke, T. 2010. “Object Based Image Analysis for Remote Sensing.” ISPRS Journal of Photogrammetry and Remote Sensing 65 (1): 2–16. https://doi.org/10.1016/j.isprsjprs.2009.06.004.
  • Blaschke, T., G. J. Hay, M. Kelly, S. Lang, P. Hofmann, E. Addink, R. Queiroz Feitosa, et al. 2014. “Geographic Object-Based Image Analysis – Towards a New Paradigm.” ISPRS Journal of Photogrammetry and Remote Sensing 87 (January): 180–191. https://doi.org/10.1016/j.isprsjprs.2013.09.014.
  • Blunden, J., and D. S. Arndt. 2017. “State of the Climate in 2016.” Bulletin of the American Meteorological Society 98 (8): Si–S280. American Meteorological Society. https://doi.org/10.1175/2017BAMSStateoftheClimate.1.
  • Calvo, B., and G. Santafé. 2016. “Scmamp: Statistical Comparison of Multiple Algorithms in Multiple Problems.” The R Journal 8 (1): 248. https://doi.org/10.32614/RJ-2016-017.
  • “CGS Planning & Lands - GIS Data (ESRI Shapefile).” 2023. Accessed April 12. https://cgs-pals.ca/downloads/gis/.
  • Chaurasia, A., and E. Culurciello. 2017. “LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation.” In 2017 IEEE Visual Communications and Image Processing (VCIP), 1–4. https://doi.org/10.1109/VCIP.2017.8305148.
  • Chen, L.-C., Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. 2018. “Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation.” arXiv. https://doi.org/10.48550/arXiv.1802.02611.
  • “Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2.” 2022. National Snow and Ice Data Center. Accessed December 8. https://nsidc.org/data/ggd318/versions/2.
  • Comiso, J. C., and D. K. Hall. 2014. “Climate Trends in the Arctic as Observed from Space.” WIREs Climate Change 5 (3): 389–409. https://doi.org/10.1002/wcc.277.
  • “Delta User Guide - Delta Supercomputer - NCSA Wiki.” 2023. Accessed April 16. https://wiki.ncsa.illinois.edu/display/DSC/Delta+User+Guide#DeltaUserGuide-Table.4-wayNVIDIAA40GPUComputeNodeSpecifications.
  • Demšar, J. 2006. “Statistical Comparisons of Classifiers Over Multiple Data Sets.” The Journal of Machine learning research 7:1–30.
  • Deng, J., W. Dong, R. Socher, L. Li-Jia, L. Kai, and L. Fei-Fei. 2009. “ImageNet: A Large-Scale Hierarchical Image Database.” In 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255. https://doi.org/10.1109/CVPR.2009.5206848.
  • Dobinski, W. 2011. “Permafrost.” Earth Science Review 108 (3): 158–169. https://doi.org/10.1016/j.earscirev.2011.06.007.
  • Dore, M. H., I. Burton, and M. Dore. 2001. “The costs of adaptation to climate change in Canada: A stratified estimate by sectors and regions.“ Canadian Climate Change Action Fund. St. Catherines, ON.
  • Duro, D. C., S. E. Franklin, and M. G. Dubé. 2012. “A Comparison of Pixel-Based and Object-Based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using SPOT-5 HRG Imagery.” Remote Sensing of Environment 118 (March): 259–272. https://doi.org/10.1016/j.rse.2011.11.020.
  • Fan, T., G. Wang, L. Yan, and H. Wang. 2020. “MA-Net: A Multi-Scale Attention Network for Liver and Tumor Segmentation.” Institute of Electrical and Electronics Engineers Access 8:179656–179665. https://doi.org/10.1109/ACCESS.2020.3025372.
  • Friedman, M. 1937. “The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance.” Journal of the American Statistical Association 32 (200): 675–701. https://doi.org/10.1080/01621459.1937.10503522.
  • Friedman, M. 1940. “A Comparison of Alternative Tests of Significance for the Problem of $m$ Rankings.” Annals of Mathematical Statistics 11 (1): 86–92. Institute of Mathematical Statistics. https://doi.org/10.1214/aoms/1177731944.
  • Gadal, S., and W. Ouerghemmi. 2019. “Multi-Level Morphometric Characterization of Built-Up Areas and Change Detection in Siberian Sub-Arctic Urban Area: Yakutsk.” ISPRS International Journal of Geo-Information 8 (3): 129. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/ijgi8030129.
  • García, S., A. Fernández, J. Luengo, and F. Herrera. 2010. “Advanced Nonparametric Tests for Multiple Comparisons in the Design of Experiments in Computational Intelligence and Data Mining: Experimental Analysis of Power.” Information Sciences 180 (10): 2044–2064. https://doi.org/10.1016/j.ins.2009.12.010.
  • García, S., and F. Herrera. 2008. “An Extension on ‘Statistical Comparisons of Classifiers Over Multiple Data Sets’ for All Pairwise Comparisons.“ Journal of machine learning research 9 (12).
  • Gautier, D. L., K. J. Bird, R. R. Charpentier, A. Grantz, D. W. Houseknecht, T. R. Klett, T. E. Moore, et al. 2009. “Assessment of Undiscovered Oil and Gas in the Arctic.” Science 324 (5931): 1175–1179. https://doi.org/10.1126/science.1169467.
  • Guerrero Vázquez, E., A. Yañez Escolano, P. Galindo Riaño, and J. Pizarro Junquera. 2001. “Repeated Measures Multiple Comparison Procedures Applied to Model Selection in Neural Networks.” In Bio-Inspired Applications of Connectionism edited by, J. Mira and A. Prieto, Vol. 2085. 88–95. Berlin Heidelberg. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-45723-2_10.
  • Hassol, S. J. 2004. Impacts of a Warming Arctic: Arctic Climate Impact Assessment. Cambridge, U.K. ; New York, N.Y: Cambridge University Press.
  • He, K., X. Zhang, S. Ren, and J. Sun. 2015. “Deep Residual Learning for Image Recognition.” arXiv. https://doi.org/10.48550/arXiv.1512.03385.
  • Hjort, J., D. Streletskiy, G. Doré, W. Qingbai, K. Bjella, and M. Luoto. 2022. “Impacts of Permafrost Degradation on Infrastructure.” Nature Reviews Earth and Environment 3 (1): 24–38. Nature Publishing Group. https://doi.org/10.1038/s43017-021-00247-8.
  • Hodges, J. L., Jr, and E. L. Lehmann. 1962. “Rank Methods for Combination of Independent Experiments in Analysis of Variance.” Annals of Mathematical Statistics 33 (2): 482–497. Institute of Mathematical Statistics. https://doi.org/10.1214/aoms/1177704575.
  • Hossain, K. 2017. “Arctic Melting: A New Economic Frontier and Global Geopolitics.” Current Developments in Arctic Law: .
  • Huang, G., Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. 2018. “Densely Connected Convolutional Networks.” arXiv. https://doi.org/10.48550/arXiv.1608.06993.
  • Iakubovskii, P. 2023. “Qubvel/Segmentation_models.Pytorch.” Python. https://github.com/qubvel/segmentation_models.pytorch.
  • Instanes, A., and O. Anisimov. 2016. “Climate Change and Arctic Infrastructure.” Proceedings of the Ninth International Permafrost Conference 1 (February): 779–784.
  • Japkowicz, N., and M. Shah. 2011. Evaluating Learning Algorithms: A Classification Perspective. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511921803.
  • Khrustalev, L. N., S. Y. Parmuzin, and L. V. Emelyanova. 2011. Reliability of Northern Infrastructure in Conditions of Changing Climate. Moscow, RU: University Book Press Moscow.
  • Kingma, D. P., and J. Ba. 2017. “Adam: A Method for Stochastic Optimization.” arXiv. http://arxiv.org/abs/1412.6980.
  • Kohavi, R. 1995. “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.” In Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, 1137–1143. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. IJCAI’95
  • Kumpula, T., B. C. Forbes, and F. Stammler. 2010. “Remote Sensing and Local Knowledge of Hydrocarbon Exploitation: The Case of Bovanenkovo, Yamal Peninsula, West Siberia, Russia.” ARCTIC 63 (2): 165–178. https://doi.org/10.14430/arctic972.
  • Kumpula, T., B. Forbes, and F. Stammler. 2006. “Combining Data from Satellite Images and Reindeer Herders in Arctic Petroleum Development: The Case of Yamal, West Siberia.” Nordia Geographical Publications 35 (2): 17–30.
  • Kumpula, T., B. C. Forbes, F. Stammler, and N. Meschtyb. 2012. “Dynamics of a Coupled System: Multi-Resolution Remote Sensing in Assessing Social-Ecological Responses During 25 Years of Gas Field Development in Arctic Russia.” Remote Sensing 4 (4): Molecular Diversity Preservation International: 1046–1068. https://doi.org/10.3390/rs4041046.
  • Kumpula, T., A. Pajunen, E. Kaarlejärvi, B. C. Forbes, and F. Stammler. 2011. “Land Use and Land Cover Change in Arctic Russia: Ecological and Social Implications of Industrial Development.” Global Environmental Change 21 (2): 550–562. https://doi.org/10.1016/j.gloenvcha.2010.12.010.
  • Larsen, P. H., S. Goldsmith, O. Smith, M. L. Wilson, K. Strzepek, P. Chinowsky, and B. Saylor. 2008. “Estimating Future Costs for Alaska Public Infrastructure at Risk from Climate Change.” Global Environmental Change 18 (3): 442–457. https://doi.org/10.1016/j.gloenvcha.2008.03.005.
  • Larsen, J. N., and L. Huskey. 2015. “The Arctic Economy in a Global Context.” In The New Arctic, edited by B. Evengård, J. N. Larsen, and Ø. Paasche, 159–174. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-17602-4_12.
  • Lehner, A., and T. Blaschke. 2019. “A Generic Classification Scheme for Urban Structure Types.” Remote Sensing 11 (2): 173. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/rs11020173.
  • Li, J., X. Huang, L. Tu, T. Zhang, and L. Wang. 2022. “A Review of Building Detection from Very High Resolution Optical Remote Sensing Images.” GIScience & Remote Sensing 59 (1): 1199–1225. Taylor & Francis. https://doi.org/10.1080/15481603.2022.2101727.
  • Li, M., L. Ma, T. Blaschke, L. Cheng, and D. Tiede. 2016. “A Systematic Comparison of Different Object-Based Classification Techniques Using High Spatial Resolution Imagery in Agricultural Environments.” International Journal of Applied Earth Observation and Geoinformation 49 (July): 87–98. https://doi.org/10.1016/j.jag.2016.01.011.
  • Lin, T.-Y., P. Goyal, R. Girshick, H. Kaiming, and P. Dollár. 2018. “Focal Loss for Dense Object Detection.” arXiv. https://doi.org/10.48550/arXiv.1708.02002.
  • López-Serrano, P., M. Carlos, A. López-Sánchez, G.Á.-G. Juan, and J. García-Gutiérrez. 2016. “A Comparison of Machine Learning Techniques Applied to Landsat-5 TM Spectral Data for Biomass Estimation.” Canadian Journal of Remote Sensing 42 (6): 690–705. https://doi.org/10.1080/07038992.2016.1217485.
  • Manos, E., C. Witharana, M. R. Udawalpola, A. Hasan, and A. K. Liljedahl. 2022. “Convolutional Neural Networks for Automated Built Infrastructure Detection in the Arctic Using Sub-Meter Spatial Resolution Satellite Imagery.” Remote Sensing 14 (11): 2719. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/rs14112719.
  • Melnikov, V., V. Osipov, A. Brouchkov, A. Falaleeva, S. Badina, M. Zheleznyak, M. Sadurtdinov, et al. 2022. “Climate Warming and Permafrost Thaw in the Russian Arctic: Potential Economic Impacts on Public Infrastructure by 2050.” Natural Hazards 112 (May): 1–21. https://doi.org/10.1007/s11069-021-05179-6.
  • Melvin, A. M., P. Larsen, B. Boehlert, J. E. Neumann, P. Chinowsky, X. Espinet, J. Martinich, et al. 2017. “Climate Change Damages to Alaska Public Infrastructure and the Economics of Proactive Adaptation.” Proceedings of the National Academy of Sciences 114 (2): E122–E131. https://doi.org/10.1073/pnas.1611056113.
  • Molinaro, A. M., R. Simon, and R. M. Pfeiffer. 2005. “Prediction Error Estimation: A Comparison of Resampling Methods.” Bioinformatics 21 (15): 3301–3307. https://doi.org/10.1093/bioinformatics/bti499.
  • Nelson, F. E., O. A. Anisimov, and N. I. Shiklomanov. 2001. “Subsidence Risk from Thawing Permafrost.” Nature 410 (6831): 889–890. Nature Publishing Group. https://doi.org/10.1038/35073746.
  • Nhu, V.-H., A. Mohammadi, H. Shahabi, B. Bin Ahmad, N. Al-Ansari, A. Shirzadi, J. J. Clague, A. Jaafari, W. Chen, and H. Nguyen. 2020. “Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment.” International Journal of Environmental Research and Public Health 17:14. Multidisciplinary Digital Publishing Institute: 4933. https://doi.org/10.3390/ijerph17144933.
  • “NSB GIS Public.” 2022. Accessed December 11. https://gis-public.north-slope.org/portal/home/.
  • Nymand Larsen, J., ed. 2014. “Arctic Human Development Report: Regional Processes and Global Linkages.” In TemaNord, 567. Vol. 2014. Copenhagen: Nordic Council of Ministers.
  • “OpenDataTemplate.” 2023. https://www.yellowknife.ca/en/inc/opendatatemplate.aspx.
  • Ourng, C., Y. Vaguet, and A. Derkacheva. 2019. “Spatio-Temporal Urban Growth Pattern in the Arctic: A Case Study in Surgut, Russia.” 2019 Joint Urban Remote Sensing Event (JURSE) 1–4. https://doi.org/10.1109/JURSE.2019.8809013.
  • Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, et al. 2019. “PyTorch: An Imperative Style, High-Performance Deep Learning Library.” C++ Advances in Neural Information Processing Systems 32 Curran Associates, Inc http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.
  • Peña, J. M., A. G. Pedro, C. Hervás-Martínez, J. Six, E. P. Richard, and F. López-Granados. 2014. “Object-Based Image Classification of Summer Crops with Machine Learning Methods.” Remote Sensing 6 (6): 5019–5041. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/rs6065019.
  • Pizarro, J., E. Guerrero, and P. L. Galindo. 2002. “Multiple Comparison Procedures Applied to Model Selection.” Neurocomputing 48 (1–4): 155–173. https://doi.org/10.1016/S0925-2312(01)00653-1.
  • Porfiriev, B. N., D. O. Eliseev, and D. A. Streletskiy. 2019. “Economic Assessment of Permafrost Degradation Effects on Road Infrastructure Sustainability Under Climate Change in the Russian Arctic.” Herald of the Russian Academy of Sciences 89 (6): 567–576. https://doi.org/10.1134/S1019331619060121.
  • Porfiriev, B. N., D. O. Eliseev, and D. A. Streletskiy. 2021. “Economic Assessment of Permafrost Degradation Effects on Healthcare Facilities in the Russian Arctic.” Herald of the Russian Academy of Sciences 91 (6): 677–686. https://doi.org/10.1134/S1019331621060113.
  • Porfiriev, B. N., D. O. Eliseev, and D. A. Streletskiy. 2021. “Economic Assessment of Permafrost Degradation Effects on the Housing Sector in the Russian Arctic.” Herald of the Russian Academy of Sciences 91 (January): 17–25. https://doi.org/10.1134/S1019331621010068.
  • Programme (AMAP), Arctic Monitoring and Assessment. 2017. Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017. Arctic Monitoring and Assessment Programme (AMAP). https://oaarchive.arctic-council.org/handle/11374/2105.
  • Ramage, J., L. Jungsberg, S. Wang, S. Westermann, H. Lantuit, and T. Heleniak. 2021. “Population Living on Permafrost in the Arctic.” Population and Environment 43 (1): 22–38. https://doi.org/10.1007/s11111-020-00370-6.
  • Ramm, F. 2020. “OpenStreetMap Data in Layered GIS Format (Geofabrik).“ Version 0.7.9. https://download.geofabrik.de/.
  • Raschka, S. 2020. “Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning.” arXiv. http://arxiv.org/abs/1811.12808.
  • Raynolds, M. K., D. A. Walker, K. J. Ambrosius, J. Brown, K. R. Everett, M. Kanevskiy, G. P. Kofinas, V. E. Romanovsky, Y. Shur, and P. J. Webber. 2014. “Cumulative Geoecological Effects of 62 Years of Infrastructure and Climate Change in Ice-Rich Permafrost Landscapes, Prudhoe Bay Oilfield, Alaska.” Global Change Biology 20 (4): 1211–1224. https://doi.org/10.1111/gcb.12500.
  • Santafé, G., I. Inza, and J. Lozano. 2015. “Dealing with the Evaluation of Supervised Classification Algorithms.” Artificial Intelligence Review 44 (June): 467–508. https://doi.org/10.1007/s10462-015-9433-y.
  • Simonyan, K., and A. Zisserman. 2015. “Very Deep Convolutional Networks for Large-Scale Image Recognition.” arXiv. https://doi.org/10.48550/arXiv.1409.1556.
  • Streletskiy, D. A., S. Clemens, J.-P. Lanckman, and N. I. Shiklomanov. 2023. “The Costs of Arctic Infrastructure Damages Due to Permafrost Degradation.” Environmental Research Letters 18 (1): 015006. https://doi.org/10.1088/1748-9326/acab18.
  • Streletskiy, D. A., A. B. Sherstiukov, O. W. Frauenfeld, and F. E. Nelson. 2015. “Changes in the 1963–2013 Shallow Ground Thermal Regime in Russian Permafrost Regions.” Environmental Research Letters 10 (12): 125005. IOP Publishing. https://doi.org/10.1088/1748-9326/10/12/125005.
  • Streletskiy, D. A., N. I. Shiklomanov, J. D. Little, F. E. Nelson, J. Brown, K. E. Nyland, and A. E. Klene. 2017. “Thaw Subsidence in Undisturbed Tundra Landscapes, Barrow, Alaska, 1962–2015.” Permafrost and Periglacial Processes 28 (3): 566–572. https://doi.org/10.1002/ppp.1918.
  • Streletskiy, D. A., L. J. Suter, N. I. Shiklomanov, B. N. Porfiriev, and D. O. Eliseev. 2019. “Assessment of Climate Change Impacts on Buildings, Structures and Infrastructure in the Russian Regions on Permafrost.” Environmental Research Letters 14 (2): 025003. https://doi.org/10.1088/1748-9326/aaf5e6.
  • Suter, L., D. Streletskiy, and N. Shiklomanov. 2019. “Assessment of the Cost of Climate Change Impacts on Critical Infrastructure in the Circumpolar Arctic.” Polar Geography 42 (4): 267–286. Taylor & Francis. https://doi.org/10.1080/1088937X.2019.1686082.
  • Tan, M., and Q. Le. 2020. “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.” arXiv. https://doi.org/10.48550/arXiv.1905.11946.
  • Udawalpola, M., A. Hasan, A. Liljedahl, A. Soliman, J. Terstriep, and C. Witharana. 2022. “An Optimal GeoAi Workflow for Pan-Arctic Permafrost Feature Detection from High-Resolution Satellite Imagery.” Photogrammetric Engineering & Remote Sensing 88 (March): 181–188. https://doi.org/10.14358/PERS.21-00059R2.
  • Udawalpola, M., A. Hasan, A. K. Liljedahl, A. Soliman, and C. Witharana. 2021. “OPERATIONAL-SCALE GEOAI for PAN-ARCTIC PERMAFROST FEATURE DETECTION from HIGH-RESOLUTION SATELLITE IMAGERY.” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (August): 175–180. XLIV-M-3–2021. https://doi.org/10.5194/isprs-archives-XLIV-M-3-2021-175-2021
  • Witharana, C., M. Abul Ehsan Bhuiyan, and A. Liljedahl. 2020. “BIG IMAGERY AND HIGH PERFORMANCE COMPUTING AS RESOURCES TO UNDERSTAND CHANGING ARCTIC POLYGONAL TUNDRA.” ISPRS - International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences XLIV-M-2-2020 (November): XLIV-M-2–2020. https://doi.org/10.5194/isprs-archives-XLIV-M-2-2020-111-2020.
  • Witharana, C., M. R. Udawalpola, A. K. Liljedahl, M. K. Jones, B. M. Jones, A. Hasan, D. Joshi, and E. Manos. 2022. “Automated Detection of Retrogressive Thaw Slumps in the High Arctic Using High-Resolution Satellite Imagery.” Remote Sensing 14 (17): 4132. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/rs14174132.
  • Witharana, C., M. R. Udawalpola, A. S. Perera, A. Hasan, E. Manos, A. Liljedahl, M. Kanevskiy, et al. 2023. Ice-Wedge Polygon Detection in Satellite Imagery from Pan-Arctic Regions, Permafrost Discovery Gateway, 2001-2021. Arctic Data Center. https://doi.org/10.18739/A2KW57K57.
  • Zar, J. H. 1999. Biostatistical Analysis. 4th ed. Upper Saddle River, NJ: Prentice Hall.
  • Zhou, Z., M. Mahfuzur Rahman Siddiquee, N. Tajbakhsh, and J. Liang. 2018. “UNet++: A Nested U-Net Architecture for Medical Image Segmentation.” arXiv. https://doi.org/10.48550/arXiv.1807.10165.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.