159
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Identification of forest fire points under clear sky conditions with Himawari-8 satellite data

, , , &
Pages 214-234 | Received 24 Aug 2023, Accepted 08 Dec 2023, Published online: 29 Dec 2023

References

  • Abram, N. J., B. J. Henley, A. Sen Gupta, T. J. R. Lippmann, H. Clarke, A. J. Dowdy, J. J. Sharples, et al. 2021. “Connections of Climate Change and Variability to Large and Extreme Forest Fires in Southeast Australia.” Communications Earth & Environment 2 (1). https://doi.org/10.1038/s43247-020-00065-8.
  • Barmpoutis, P., P. Papaioannou, K. Dimitropoulos, and N. Grammalidis. 2020. “A Review on Early Forest Fire Detection Systems Using Optical Remote Sensing.” Sensors 20 (22): 6442. https://doi.org/10.3390/s20226442.
  • Breiman, L. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. https://doi.org/10.1023/A:1010933404324.
  • Chen, J., W. Zheng, and C. Liu. 2017. “Application of Grassland Fire Monitoring Based on Himawari-8 Geostationary Meteorological Satellite Data.” Journal of Natural Disasters 26 (4): 197–204. https://doi.org/10.11834/jrs.20219176.
  • Dozier, J. 1981. “A Method for Satellite Identification of Surface Temperature Fields of Subpixel Resolution.” Remote Sensing of Environment 11:221–229. https://doi.org/10.1016/0034-4257(81)90021-3.
  • Du, P., M. Liu, T. Xu, and Y. Song. 2018. “Application of Himawari-8 Data in Monitoring Forest Fire.” Acta Scientiarum Naturalium Universitatis Pekinensis 54 (6): 1251–1258. https://doi.org/10.13209/j.0479-8023.2018.082.
  • Farguell, A., J. Mandel, J. Haley, D. V. Mallia, A. Kochanski, and K. Hilburn. 2021. “Machine Learning Estimation of Fire Arrival Time from Level-2 Active Fires Satellite Data.” Remote Sensing 13 (11): 2203. https://doi.org/10.3390/rs13112203.
  • Fatkhuroyan, T. W., and A. Panjaitan. 2017. “Forest Fires Detection in Indonesia Using Satellite Himawari-8 (Case Study: Sumatera and Kalimantan on August-October 2015).” In 3RD International Symposium on Lapan-Ipb Satellite for Food Security and Environmental Monitoring 2016 54. https://doi.org/10.1088/1755-1315/54/1/012053.
  • Flannigan, D. M., and T. V. Haar. 1986. “Forest Fire Monitoring Using NOAA Satellite AVHRR.” Canadian Journal of Forest Research 16 (5): 975–982. https://doi.org/10.1139/x86-171.
  • Flasse, S. P., and P. Ceccato. 1996. “A contextual algorithm for AVHRR fire detection.” International Journal of Remote Sensing 17 (2): 419–424. https://doi.org/10.1080/01431169608949018.
  • Fusco, E. J., J. T. Finn, J. T. Abatzoglou, J. K. Balch, S. Dadashi, and B. A. Bradley. 2019. “Detection Rates and Biases of Fire Observations from MODIS and Agency Reports in the Conterminous United States.” Remote Sensing of Environment 220:30–40. https://doi.org/10.1016/j.rse.2018.10.028.
  • Giglio, L., I. Csiszar, and C. O. Justice. 2006. “Global Distribution and Seasonality of Active Fires as Observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Sensors.” Journal of Geophysical Research: Biogeosciences 111 (G2). https://doi.org/10.1029/2005JG000142.
  • Giglio, L., J. Descloitres, C. O. Justice, and Y. J. Kaufman. 2003. “An enhanced contextual fire detection algorithm for MODIS.” Remote Sensing of Environment 87 (2–3): 273–82. https://doi.org/10.1016/S0034-4257(03)00184-6.
  • Gong, A. D., J. Li, and Y. L. Chen. 2021. “A Spatio-Temporal Brightness Temperature Prediction Method for Forest Fire Detection with MODIS Data: A Case Study in San Diego.” Remote Sensing 13 (15): 2900. https://doi.org/10.3390/rs13152900.
  • Hally, B., L. Wallace, K. Reinke, S. Jones, and A. Skidmore. 2019. “Advances in Active Fire Detection Using a Multi-Temporal Method for Next-Generation Geostationary Satellite Data.” International Journal of Digital Earth 12 (9): 1030–45. https://doi.org/10.1080/17538947.2018.1497099.
  • Hall, J. V., R. Zhang, W. Schroeder, C. Huang, and L. Giglio. 2019. “Validation of GOES-16 ABI and MSG SEVIRI Active Fire Products.” International Journal of Applied Earth Observation and Geoinformation 83:101928. https://doi.org/10.1016/j.jag.2019.101928.
  • He, Z. W., and B. H. Tang. 2023. “Spatiotemporal Change Patterns and Driving Factors of Land Surface Temperature in the Yunnan-Kweichow Plateau from 2000 to 2020.” Science of the Total Environment 896:165288. https://doi.org/10.1016/j.scitotenv.2023.165288.
  • Hong, Z. H., Z. Z. Tang, H. Y. Pan, Y. W. Zhang, Z. S. Zheng, R. Y. Zhou, Z. L. Ma, et al. 2022. “Active Fire Detection Using a Novel Convolutional Neural Network Based on Himawari-8 Satellite Images.” Frontiers in Environmental Science 10. https://doi.org/10.3389/fenvs.2022.794028.
  • Huang, J. R., Z. L. He, Y. W. Guan, and H. G. Zhang. 2023. “Real-Time Forest Fire Detection by Ensemble Lightweight YOLOX-L and Defogging Method.” Sensors 23 (4): 1894. https://doi.org/10.3390/s23041894.
  • Jain, P., S. C. P. Coogan, S. G. Subramanian, M. Crowley, S. Taylor, and M. D. Flannigan. 2020. “A Review of Machine Learning Applications in Wildfire Science and Management.” Environmental Reviews 28 (4): 478–505. https://doi.org/10.1139/er-2020-0019.
  • Jang, E., J. Im, G. H. Park, and Y. G. Park. 2017. “Estimation of Fugacity of Carbon Dioxide in the East Sea Using in situ Measurements and Geostationary Ocean Color Imager Satellite Data.” Remote Sensing 9 (8): 821. https://doi.org/10.3390/rs9080821.
  • Jang, E., Y. Kang, J. Im, D. W. Lee, J. Yoon, and S. K. Kim. 2019. “Detection and Monitoring of Forest Fires Using Himawari-8 Geostationary Satellite Data in South Korea.” Remote Sensing 11 (3): 3. https://doi.org/10.3390/rs11030271.
  • Kang, Y., E. Jang, J. Im, and C. Kwon. 2022. “A Deep Learning Model Using Geostationary Satellite Data for Forest Fire Detection with Reduced Detection Latency.” GIScience & Remote Sensing 59 (1): 2019–2035. https://doi.org/10.1080/15481603.2022.2143872.
  • Kaufman, Y. J., C. J. Tucker, and I. Y. Fung. 1989. “Remote-Sensing of Biomass Burning in the Tropics.” Advances in Space Research 9 (7): 265–268. https://doi.org/10.1007/978-3-642-75395-4-16.
  • Kushida, K. 2010. “Detection of Active Wildland Fires Using Multitemporal MODIS Images.” IEEE Geoscience and Remote Sensing Letters 7 (2): 301–5. https://doi.org/10.1109/LGRS.2009.2034029.
  • Le Page, Y., D. Oom, J. M. N. Silva, P. Jonsson, and J. M. C. Pereira. 2010. “Seasonality of Vegetation Fires as Modified by Human Action: Observing the Deviation from Eco-Climatic Fire Regimes.” Global Ecology and Biogeography 19 (4): 575–588. https://doi.org/10.1111/j.1466-8238.2010.00525.x.
  • Lin, Z. Y., F. Chen, Z. Niu, B. Li, B. Yu, H. C. Jia, and M. M. Zhang. 2018. “An Active Fire Detection Algorithm Based on Multi-Temporal FengYun-3C VIRR Data.” Remote Sensing of Environment 211:376–387. https://doi.org/10.1016/j.rse.2018.04.027.
  • Lin, L., Y. Meng, A. Z. Yue, Y. Yuan, X. Y. Liu, J. B. Chen, M. M. Zhang, and J. S. Chen. 2016. “A Spatio-Temporal Model for Forest Fire Detection Using HJ-IRS Satellite Data.” Remote Sensing 8 (5): 403. https://doi.org/10.3390/rs8050403.
  • Liu, T., A. Abd-Elrahman, J. Morton, and V. L. Wilhelm. 2018. “Comparing Fully Convolutional Networks, Random Forest, Support Vector Machine, and Patch-Based Deep Convolutional Neural Networks for Object-Based Wetland Mapping Using Images from Small Unmanned Aircraft System.” GIScience & Remote Sensing 55 (2): 243–64. https://doi.org/10.1080/15481603.2018.1426091.
  • Liu, C., R. Chen, and B. He. 2023. “Integrating Machine Learning and a Spatial Contextual Algorithm to Detect Wildfire from Himawari-8 Data in Southwest China.” Forests 14 (5): 919. https://doi.org/10.3390/f14050919.
  • Lu, A., H. Tian, and Y. Liu. 2005. “State-Of-The-Art in Quantifying Fire Disturbance and Ecosystem Carbon Cycle.” Acta Ecologica Sinica 25 (10): 2734–2743.
  • Maeda N, and H. Tonooka. 2023.“Early Stage Forest Fire Detection from Himawari-8 AHI Images Using a Modified MOD14 Algorithm Combined with Machine Learning.” Sensors 23 (1): 210. https://doi.org/10.3390/s23010210.
  • Na, L., J. Q. Zhang, Y. L. Bao, Y. B. Bao, R. S. Na, S. Q. Tong, and A. Si. 2018. “Himawari-8 Satellite Based Dynamic Monitoring of Grassland Fire in China-Mongolia Border Regions.” Sensors 18 (1): 276. https://doi.org/10.3390/s18010276.
  • Pinto, M. M., R. Libonati, R. M. Trigo, I. F. Trigo, and C. C. DaCamara. 2020. “A Deep Learning Approach for Mapping and Dating Burned Areas Using Temporal Sequences of Satellite Images.” ISPRS Journal of Photogrammetry and Remote Sensing 160:260–274. https://doi.org/10.1016/j.isprsjprs.2019.12.014.
  • Plank, S., E. M. Fuchs, and C. Frey. 2017. “A Fully Automatic Instantaneous Fire Hotspot Detection Processor Based on AVHRR Imagery—A TIMELINE Thematic Processor.” Remote Sensing 9 (1): 30. https://doi.org/10.3390/rs9010030.
  • Priya, R. S., K. Vani. 2019. “Deep Learning Based Forest Fire Classification and Detection in Satellite Images.” In 2019 11th International Conference on Advanced Computing (ICOAC 2019), 61–65. http://doi.org/10.1109/ICoAC48765.2019.246817.
  • Richardson, H. J., D. J. Hill, D. R. Denesiuk, and L. H. Fraser. 2017. “A Comparison of Geographic Datasets and Field Measurements to Model Soil Carbon Using Random Forests and Stepwise Regressions (British Columbia, Canada).” GIScience & Remote Sensing 54 (4): 573–91. https://doi.org/10.1080/15481603.2017.1302181.
  • Schroeder, W., P. Oliva, L. Giglio, and I. A. Csiszar. 2014. “The New VIIRS 375 M Active Fire Detection Data Product: Algorithm Description and Initial Assessment.” Remote Sensing of Environment 143:85–96. https://doi.org/10.1016/j.rse.2013.12.008.
  • Schroeder, W., P. Oliva, L. Giglio, B. Quayle, E. Lorenz, and F. Morelli. 2016. “Active Fire Detection Using Landsat-8/OLI Data.” Remote Sensing of Environment 185:210–220. https://doi.org/10.1016/j.rse.2015.08.032.
  • Soro, T. D., M. Kone, A. B. N’Dri, and E. T. N’Datchoh. 2021. “Identified MAIN FIRE HOTSPOTS and Seasons in Côte d’Ivoire (West Africa) Using MODIS FIRE DATA.” African Journal of Science 117 (1/2): 1–2. https://doi.org/10.17159/sajs.2021/7659.
  • Szpakowski, D. M., and J. L. R. Jensen. 2019. “A Review of the Applications of Remote Sensing in Fire Ecology.” Remote Sensing 11 (22): 2638. https://doi.org/10.3390/rs11222638.
  • Wickramasinghe, C. H., S. Jones, K. Reinke, and L. Wallace. 2016. “Development of a Multi-Spatial Resolution Approach to the Surveillance of Active Fire Lines Using Himawari-8.” Remote Sensing 8 (11): 932. https://doi.org/10.3390/rs8110932.
  • Xie, Z. X., W. G. Song, R. Ba, X. L. Li, and L. Xia. 2018. “A Spatiotemporal Contextual Model for Forest Fire Detection Using Himawari-8 Satellite Data.” Remote Sensing 10 (12): 1992. https://doi.org/10.3390/rs10121992.
  • Xu, W., M. J. Wooster, T. Kaneko, J. He, T. Zhang, and D. Fisher. 2017. “Major Advances in Geostationary Fire Radiative Power (FRP) Retrieval Over Asia and Australia Stemming from Use of Himarawi-8 AHI.” Remote Sensing of Environment 193:138–149. https://doi.org/10.1016/j.rse.2017.02.024.
  • Xu, G., and X. Zhong. 2017. “Real-Time Wildfire Detection and Tracking in Australia Using Geostationary Satellite: Himawari-8.” Remote Sensing Letters 8 (11): 1052–61. https://doi.org/10.1080/2150704X.2017.1350303.
  • Zheng, C. K., H. J. Gao, Z. H. Wang, and Ieee. 2022. “A Deep Learning-Based Fire Monitoring Algorithm Using Himawari-8 Satellite Data.” In 2022 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2022), 6126–6129. https://doi.org/10.1109/IGARSS46834.2022.9883729.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.