51
Views
0
CrossRef citations to date
0
Altmetric
Research Article

High-accuracy FY-3A/MERSI precipitable water vapour (PWV) data over the continental United States

, , , , , , , , , & ORCID Icon show all
Pages 1368-1384 | Received 27 Aug 2023, Accepted 14 Jan 2024, Published online: 12 Feb 2024

References

  • Bennartz, R., and J. Fischer. 2001. “Retrieval of Columnar Water Vapour Over Land from Backscattered Solar Radiation Using the Medium Resolution Imaging Spectrometer.” Remote Sensing of Environment 78 (3): 274–283. https://doi.org/10.1016/S0034-4257(01)00218-8.
  • Bouffies, S., F. M. Breon, D. Tanre, and P. Dubuisson. 1997. “Atmospheric Water Vapor Estimate by a Differential Absorption Technique with the Polarisation and Directionality of the Earth Reflectances (POLDER) Instrument.” Journal of Geophysical Research-Atmospheres 102 (D3): 3831–3841. https://doi.org/10.1029/96JD03126.
  • Gao, B. C., and Y. J. Kaufman. 2003. “Water vapor retrievals using moderate resolution Imaging spectroradiometer (MODIS) near-infrared channels.” Journal of Geophysical Research-Atmospheres 108 (D13): 10. https://doi.org/10.1029/2002JD003023.
  • Ghaderi, M., and M. Rahimzadegan. 2022. “Improving Precipitable Water Vapor Estimations of the Moderate Resolution Imaging Spectroradiometer (MODIS) Using Metaheuristic Algorithms.” Advances in Space Research 69 (12): 4274–4287. https://doi.org/10.1016/j.asr.2022.03.035.
  • Giles, D. M., A. Sinyuk, M. G. Sorokin, J. S. Schafer, A. Smirnov, I. Slutsker, T. F. Eck, et al. 2019. “Advancements in the Aerosol Robotic Network (AERONET) Version 3 Database – Automated Near-Real-Time Quality Control Algorithm with Improved Cloud Screening for Sun Photometer Aerosol Optical Depth (AOD) Measurements.” Atmospheric Measurement Techniques 12 (1): 169–209. https://doi.org/10.5194/amt-12-169-2019.
  • Gong, S. Q., D. F. Hagan, J. Lu, and G. J. Wang. 2018. “Validation on MERSI/FY-3A Precipitable Water Vapor Product.” Advances in Space Research 61 (1): 413–425. https://doi.org/10.1016/j.asr.2017.10.005.
  • Gui, K., H. Che, Q. Chen, Z. Zeng, H. Liu, Y. Wang, Y. Zheng, et al. 2017. “Evaluation of Radiosonde, MODIS-NIR-Clear, and AERONET Precipitable Water Vapor Using IGS Ground-Based GPS Measurements Over China.” Atmospheric Research 197:461–473. https://doi.org/10.1016/j.atmosres.2017.07.021.
  • He, J., and Z. Liu. 2019. “Comparison of Satellite-Derived Precipitable Water Vapor Through Near-Infrared Remote Sensing Channels.” Ieee Transactions on Geoscience and Remote Sensing 57 (12): 10252–10262. https://doi.org/10.1109/TGRS.2019.2932847.
  • Held, I. M., and B. J. Soden. 2000. “Water Vapor Feedback and Global Warming.” Annual Review of Energy and the Environment 25 (1): 441–475. https://doi.org/10.1146/annurev.energy.25.1.441.
  • Holben, B. N., T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, et al. 1998. “AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization.” Remote Sensing of Environment 66 (1): 1–16. https://doi.org/10.1016/S0034-4257(98)00031-5.
  • Hu, X., Y. Huang, Q. Lu, and J. Zheng. 2011. “Retrieving Precipitable Water Vapor Based on the Near-Infrared Data of FY-3A Satellite.” Journal of Applied Meteorological Science 22 (1): 46–56.
  • Lyngwa, R. V., and M. A. Nayak. 2021. “Atmospheric River Linked to Extreme Rainfall Events Over Kerala in August 2018.” Atmospheric Research 253:13. https://doi.org/10.1016/j.atmosres.2021.105488.
  • Ma, X., Y. Yao, B. Zhang, and Z. Du. 2022. “FY-3A/MERSI Precipitable Water Vapor Reconstruction and Calibration Using Multi-Source Observation Data Based on a Generalized Regression Neural Network.” Atmospheric Research 265:105893. https://doi.org/10.1016/j.atmosres.2021.105893.
  • Ma, X. W., Y. B. Yao, B. Zhang, and C. Y. He. 2022. “Retrieval of High Spatial Resolution Precipitable Water Vapor Maps Using Heterogeneous Earth Observation Data.” Remote Sensing of Environment 278:113100. https://doi.org/10.1016/j.rse.2022.113100.
  • Martins, V. S., A. Lyapustin, Y. J. Wang, D. M. Giles, A. Smirnov, I. Slutsker, and S. Korkin. 2019. “Global Validation of Columnar Water Vapor Derived from EOS MODIS-MAIAC Algorithm Against the Ground-Based AERONET Observations.” Atmospheric Research 225:181–192. https://doi.org/10.1016/j.atmosres.2019.04.005.
  • Merrikhpour, M. H., and M. Rahimzadegan. 2017. “Improving the Algorithm of Extracting Regional Total Precipitable Water Vapor Over Land from MODIS Images.” Ieee Transactions on Geoscience and Remote Sensing 55 (10): 5889–5898. https://doi.org/10.1109/TGRS.2017.2716414.
  • Qie, L. L., Z. Q. Li, S. F. Zhu, H. Xu, Y. S. Xie, R. Qiao, J. Hong, and B. H. Tu. 2021. “In-Flight Radiometric and Polarimetric Calibration of the Directional Polarimetric Camera Onboard the GaoFen-5 Satellite Over the Ocean.” Applied Optics 60 (24): 7186–7199. https://doi.org/10.1364/AO.422980.
  • Reid, K. J., S. M. Rosier, L. J. Harrington, A. D. King, and T. P. Lane. 2021. “Extreme Rainfall in New Zealand and Its Association with Atmospheric Rivers.” Environmental Research Letters 16 (4): 044012. https://doi.org/10.1088/1748-9326/abeae0.
  • She, L., H. Zhang, W. Wang, Y. Wang, and Y. Shi. 2019. “Evaluation of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Aerosol Algorithm for Himawari-8 Data.” Remote Sensing 11 (23): 11. https://doi.org/10.3390/rs11232771.
  • Van Malderen, R., E. Pottiaux, G. Stankunavicius, S. Beirle, T. Wagner, H. Brenot, C. Bruyninx, and J. Jones. 2022. “Global Spatiotemporal Variability of Integrated Water Vapor Derived from GPS, GOME/SCIAMACHY and ERA-Interim: Annual Cycle, Frequency Distribution and Linear Trends.” Remote Sensing 14 (4): 1050. https://doi.org/10.3390/rs14041050.
  • Wang, C., Z. Shi, Y. Q. Xie, D. G. Luo, Z. Q. Li, D. C. Wang, and X. N. Chen. 2023. “Precipitable Water Vapor Retrieval Based on DPC Onboard GaoFen-5 (02) Satellite.” Remote Sensing 15 (1): 94. https://doi.org/10.3390/rs15010094.
  • Wang, L., X. Q. Hu, N. Xu, and L. Chen. 2021. “Water Vapor Retrievals from Near-Infrared Channels of the Advanced Medium Resolution Spectral Imager Instrument Onboard the Fengyun-3D Satellite.” Advances in Atmospheric Sciences 38 (8): 1351–1366. https://doi.org/10.1007/s00376-020-0174-8.
  • Wang, Z. L., M. P. Sun, X. J. Yao, L. Zhang, and H. Zhang. 2021. “Spatiotemporal Variations of Water Vapor Content and Its Relationship with Meteorological Elements in the Third Pole.” Water 13 (13): 17. https://doi.org/10.3390/w13131856.
  • Ware, R. H., D. W. Fulker, S. A. Stein, D. N. Anderson, S. K. Avery, R. D. Clark, K. K. Droegemeier, J. P. Kuettner, J. B. Minster, and S. Sorooshian. 2000. “SuomiNet: A Real–Time National GPS Network for Atmospheric Research and Education.” Bulletin of the American Meteorological Society 81 (4): 677–694. https://doi.org/10.1175/1520-0477(2000)081<0677:SARNGN>2.3.CO;2.
  • Xie, Y., W. Hou, Z. Li, S. Zhu, Z. Liu, J. Hong, Y. Ma, et al. 2022. “Columnar Water Vapor Retrieval by Using Data from the Polarized Scanning Atmospheric Corrector (PSAC) Onboard HJ-2 A/B Satellites.” Remote Sensing 14 (6): 1376. https://doi.org/10.3390/rs14061376.
  • Xie, Y., Z. Li, J. Guang, W. Hou, A. Salam, Z. Ali, and L. Fang. 2022. “Aerosol Optical Depth Retrieval Over South Asia Using FY-4A/AGRI Data.” Ieee Transactions on Geoscience and Remote Sensing 60:1–14. https://doi.org/10.1109/TGRS.2021.3124421.
  • Xie, Y., Z. Li, W. Hou, J. Guang, Y. Ma, Y. Wang, S. Wang, and D. Yang. 2021. “Validation of FY-3D MERSI-2 Precipitable Water Vapor (PWV) Datasets Using Ground-Based PWV Data from AERONET.” Remote Sensing 13 (16): 3246. https://doi.org/10.3390/rs13163246.
  • Xie, Y., M. Zhang, Z. Wang, Y. Wen, L. Zhang, Y. Li, W. Hou, et al. 2023. “Performance of the Semi-Empirical Precipitable Water Vapor Retrieval Algorithm Developed for Polarized Scanning Atmospheric Corrector (PSAC) in the Presence of Sensor Decay.” Ieee Transactions on Geoscience and Remote Sensing 61:1. https://doi.org/10.1109/TGRS.2023.3304129.
  • Xu, H., J. Guang, Y. Xue, G. de Leeuw, Y. H. Che, J. P. Guo, X. W. He, and T. K. Wang. 2015. “A Consistent Aerosol Optical Depth (AOD) Dataset Over Mainland China by Integration of Several AOD Products.” Atmospheric Environment 114:48–56. https://doi.org/10.1016/j.atmosenv.2015.05.023.
  • Xu, J. F., and Z. Z. Liu. 2021. “Radiance-Based Retrieval of Total Water Vapor Content from Sentinel-3A OLCI NIR Channels Using Ground-Based GPS Measurements.” International Journal of Applied Earth Observation and Geoinformation 104:102586. https://doi.org/10.1016/j.jag.2021.102586.
  • Xu, J. F., and Z. Z. Liu. 2022. “Evaluation of Precipitable Water Vapor Product from MODIS and MERSI-II NIR Channels Using Ground- Based GPS Measurements Over Australia.” Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing 15:8744–8758. https://doi.org/10.1109/JSTARS.2022.3211879.
  • Yang, J., C. Dong, N. Lu, Z. Yang, J. Shi, P. Zhang, Y. Liu, and B. Cai. 2009. “FY-3A: The New Generation Polar-Orbiting Meteorological Satellite of China.” Acta Meteorologica Sinica 67 (4): 501–509.
  • Zhang, B., and Y. B. Yao. 2021. “Precipitable Water Vapor Fusion Based on a Generalized Regression Neural Network.” Journal of Geodesy 95 (3). https://doi.org/10.1007/s00190-021-01482-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.