37
Views
0
CrossRef citations to date
0
Altmetric
Research article

Estimating forest aboveground biomass in tropical forests with Landsat time-series data and recurrent neural network

&
Pages 4764-4787 | Received 26 Jan 2024, Accepted 07 Jun 2024, Published online: 03 Jul 2024

References

  • Arévalo, P., A. Baccini, C. E. Woodcock, P. Olofsson, and W. S. Walker. 2023. “Continuous Mapping of Aboveground Biomass Using Landsat Time Series.” Remote Sensing of Environment 288:113483. https://doi.org/10.1016/j.rse.2023.113483.
  • Astola, H., L. Seitsonen, E. Halme, M. Molinier, and A. Lönnqvist. 2021. “Deep Neural Networks with Transfer Learning for Forest Variable Estimation Using Sentinel-2 Imagery in Boreal Forest.” Remote Sensing 13 (12): 2392. https://doi.org/10.3390/rs13122392.
  • Badgley, G., C. B. Field, and J. A. Berry. 2017. “Canopy Near-Infrared Reflectance and Terrestrial Photosynthesis.” Science Advances 3:e1602244. https://doi.org/10.1126/sciadv.1602244.
  • Breiman, L. 2001. “Random Forests.” Machine Learning 45 (1): 5–32.
  • Chambers, J. Q., N. Higuchi, J. P. Schimel, L. V. Ferreira, and J. M. Melack. 2000. “Decomposition and Carbon Cycling of Dead Trees in Tropical Forests of the Central Amazon.” Oecologia 122 (3): 380–388. https://doi.org/10.1007/s004420050044.
  • Chave, J., D. Coomes, S. Jansen, S. L. Lewis, N. G. Swenson, and A. E. Zanne. 2009. “Towards a Worldwide Wood Economics Spectrum.” Ecology Letters 12 (4): 351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x.
  • Chave, J., M. Réjou‐Méchain, A. Búrquez, E. Chidumayo, M. S. Colgan, W. B. Delitti, A. Duque, et al. 2014. “Improved Allometric Models to Estimate the Aboveground Biomass of Tropical Trees.” Global Change Biology 20 (10): 3177–3190.
  • Cohen, W. B., S. P. Healey, Z. Yang, S. V. Stehman, C. K. Brewer, E. B. Brooks, N. Gorelick, et al. 2017. “How Similar Are Forest Disturbance Maps Derived from Different Landsat Time Series Algorithms?” Forests 8 (4): 98. https://doi.org/10.3390/f8040098.
  • Cooper, S., A. Okujeni, D. Pflugmacher, S. van der Linden, and P. Hostert. 2021. “Combining Simulated Hyperspectral EnMAP and Landsat Time Series for Forest Aboveground Biomass Mapping.” International Journal of Applied Earth Observation and Geoinformation 98:102307. https://doi.org/10.1016/j.jag.2021.102307.
  • Deo, R. K., M. B. Russell, G. M. Domke, C. W. Woodall, M. J. Falkowski, and W. B. Cohen. 2017. “Using Landsat Time-Series and LiDAR to Inform Aboveground Forest Biomass Baselines in Northern Minnesota, USA.” Canadian Journal of Remote Sensing 43 (1): 28–47. https://doi.org/10.1080/07038992.2017.1259556.
  • DeVries, B., A. K. Pratihast, J. Verbesselt, L. Kooistra, M. Herold, and K. P. Vadrevu. 2016. “Characterizing Forest Change Using Community-Based Monitoring Data and Landsat Time Series.” PLoS ONE 11 (3): e0147121. https://doi.org/10.1371/journal.pone.0147121.
  • DeVries, B., J. Verbesselt, L. Kooistra, and M. Herold. 2015. “Robust Monitoring of Small-Scale Forest Disturbances in a Tropical Montane Forest Using Landsat Time Series.” Remote Sensing of Environment 161:107–121. https://doi.org/10.1016/j.rse.2015.02.012.
  • Du, P., X. Bai, K. Tan, Z. Xue, A. Samat, J. Xia, E. Li, H. Su, and W. Liu. 2020. “Advances of Four Machine Learning Methods for Spatial Data Handling: A Review.” Journal of Geovisualization and Spatial Analysis 4 (1): 1–25. https://doi.org/10.1007/s41651-020-00048-5.
  • Ediriweera, S., S. Pathirana, T. Danaher, and D. Nichols. 2014. “Estimating Above-Ground Biomass by Fusion of LiDAR and Multispectral Data in Subtropical Woody Plant Communities in Topographically Complex Terrain in North-Eastern Australia.” Journal of Forestry Research 25 (4): 761–771. https://doi.org/10.1007/s11676-014-0485-7.
  • Ercanl, İ. 2020. “Artificial Intelligence with Deep Learning Algorithms to Model Relationships Between Total Tree Height and Diameter at Breast Height.” Forest Systems 29 (2): 118–1. https://doi.org/10.5424/fs/2020292-16393.
  • Gómez, C., J. C. White, M. A. Wulder, and P. Alejandro. 2014. “Historical Forest Biomass Dynamics Modelled with Landsat Spectral Trajectories.” ISPRS Journal of Photogrammetry and Remote Sensing 93:14–28. https://doi.org/10.1016/j.isprsjprs.2014.03.008.
  • Goodman, R. C., O. L. Phillips, D. Del Castillo Torres, L. Freitas, S. T. Cortese, A. Monteagudo, and T. R. Baker. 2013. “Amazon Palm Biomass and Allometry.” Forest Ecology and Management 310:994–1004. https://doi.org/10.1016/j.foreco.2013.09.045.
  • Greff, K., R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber. 2016. “LSTM: A Search Space Odyssey.” IEEE Transactions on Neural Networks and Learning Systems 28 (10): 2222–2232.
  • Hochreiter, S., and J. Schmidhuber. 1997. “Long Short-Term Memory.” Neural Computation 9 (8): 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735.
  • Houghton, R. A., K. T. Lawrence, J. L. Hackler, and S. Brown. 2001. “The Spatial Distribution of Forest Biomass in the Brazilian Amazon: A Comparison of Estimates.” Global Change Biology 7 (7): 731–746. https://doi.org/10.1111/j.1365-2486.2001.00426.x.
  • Huang, C., S. N. Goward, J. G. Masek, N. Thomas, Z. Zhu, and J. E. Vogelmann. 2010. “An Automated Approach for Reconstructing Recent Forest Disturbance History Using Dense Landsat Time Series Stacks.” Remote Sensing of Environment 114 (1): 183–198. https://doi.org/10.1016/j.rse.2009.08.017.
  • Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Y. Gao, and L. G. Ferreira. 2002. “Overview of the Radiometric and Biophysical Performance of the Modis Vegetation Indices.” Remote Sensing of Environment 83 (1–2): 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2.
  • Hundman, K., V. Constantinou, C. Laporte, I. Colwell, and T. Soderstrom. 2018. “Detecting Spacecraft Anomalies Using Lstms and Nonparametric Dynamic Thresholding.” Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London United Kingdom, 387–395.
  • INPE. 2000. “Deforestation Estimates in the Brazilian Amazon.” Brazil: Instituto Nacional de Pesquisas Espaciais, Sa˜o Jose´ dos Campos.
  • Jiang, Z., A. R. Huete, K. Didan, and T. Miura. 2008. “Development of a Two-Band Enhanced Vegetation Index without a Blue Band.” Remote Sensing of Environment 112 (10): 3833–3845. https://doi.org/10.1016/j.rse.2008.06.006.
  • Kashongwe, H. B., D. P. Roy, and J. R. B. Bwangoy. 2020. “Democratic Republic of the Congo Tropical Forest Canopy Height and Aboveground Biomass Estimation with Landsat-8 Operational Land Imager (OLI) and Airborne LiDAR Data: The Effect of Seasonal Landsat Image Selection.” Remote Sensing 12 (9): 1360.
  • Keller, M., M. Palace, G. P. Asner, R. Pereira Jr, and J. N. M. Silva. 2004. “Coarse Woody Debris in Undisturbed and Logged Forests in the Eastern Brazilian Amazon.” Global Change Biology 10 (5): 784–795.
  • Kennedy, R. E., J. Ohmann, M. Gregory, H. Roberts, Z. Yang, D. M. Bell, V. Kane, et al. 2018. “An Empirical, Integrated Forest Biomass Monitoring System.” Environmental Research Letters 13 (2): 025004. https://doi.org/10.1088/1748-9326/aa9d9e.
  • Kennedy, R. E., Z. Yang, and W. B. Cohen. 2010. “Detecting Trends in Forest Disturbance and Recovery Using Yearly Landsat Time Series: 1. LandTrendr—Temporal Segmentation Algorithms.” Remote Sensing of Environment 114 (12): 2897–2910. https://doi.org/10.1016/j.rse.2010.07.008.
  • Khaki, S., L. Wang, and S. V. Archontoulis. 2020. “A Cnn-Rnn Framework for Crop Yield Prediction.” Frontiers in Plant Science 10:1750. https://doi.org/10.3389/fpls.2019.01750.
  • Lapola, D. M., P. Pinho, J. Barlow, L. E. Aragão, E. Berenguer, R. Carmenta, H. M. Liddy, et al. 2023. The Drivers and Impacts of Amazon Forest Degradation. Science, 379(6630), p.eabp8622.
  • Liaw, A., and M. Wiener. 2002. “Classification and Regression by randomForest.” R News 2 (3): 18–22.
  • Longo, M., M. Keller, M. N. dos‐Santos, V. Leitold, E. R. Pinagé, A. Baccini, S. Saatchi, E. M. Nogueira, M. Batistella, and D. C. Morton. 2016. “Aboveground Biomass Variability Across Intact and Degraded Forests in the Brazilian Amazon.” Global Biogeochemical Cycles 30 (11): 1639–1660. https://doi.org/10.1002/2016GB005465.
  • Magurran, A. E. 2013. Measuring biological diversity. John Wiley & Sons.
  • Masek, J. G., E. F. Vermote, N. E. Saleous, R. Wolfe, F. G. Hall, K. F. Huemmrich, F. Gao, J. Kutler, and T. K. Lim. 2006. “A Landsat Surface Reflectance Dataset for North America, 1990–2000.” IEEE Geoscience and Remote Sensing Letters 3 (1): 68–72.
  • Matasci, G., T. Hermosilla, M. A. Wulder, J. C. White, N. C. Coops, G. W. Hobart, and H. S. Zald. 2018. “Large-Area Mapping of Canadian Boreal Forest Cover, Height, Biomass and Other Structural Attributes Using Landsat Composites and Lidar Plots.” Remote Sensing of Environment 209 (2018): 90–106.
  • Narine, L. L., S. C. Popescu, and L. Malambo. 2019. “Synergy of ICESat-2 and Landsat for Mapping Forest Aboveground Biomass with Deep Learning.” Remote Sensing 11 (12): 1503. https://doi.org/10.3390/rs11121503.
  • Nguyen, H., T. Jones, S. Soto-Berelov, M. Haywood, and S. Hislop. 2019. “Landsat Time-Series for Estimating Forest Aboveground Biomass and Its Dynamics Across Space and Time: A Review.” Remote Sensing 12 (1): 98.
  • Nguyen, T. H., S. D. Jones, M. Soto-Berelov, A. Haywood, and S. Hislop. 2020. “Monitoring Aboveground Forest Biomass Dynamics Over Three Decades Using Landsat Time-Series and Single-Date Inventory Data.” International Journal of Applied Earth Observation and Geoinformation 84:101952. https://doi.org/10.1016/j.jag.2019.101952.
  • Ogana, F. N., and I. Ercanli. 2022. “Modelling Height-Diameter Relationships in Complex Tropical Rain Forest Ecosystems Using Deep Learning Algorithm.” Journal of Forestry Research 33 (3): 883–898.
  • Palace, M., M. Keller, G. P. Asner, J. N. M. Silva, and C. Passos. 2007. “Necromass in Undisturbed and Logged Forests in the Brazilian Amazon.” Forest Ecology & Management 238 (1–3): 309–318.
  • Pflugmacher, D., W. B. Cohen, and R. E. Kennedy. 2012. “Using Landsat-Derived Disturbance History (1972–2010) to Predict Current Forest Structure.” Remote Sensing of Environment 122:146–165. https://doi.org/10.1016/j.rse.2011.09.025.
  • Pflugmacher, D., W. B. Cohen, R. E. Kennedy, and Z. Yang. 2014. “Using Landsat-Derived Disturbance and Recovery History and Lidar to Map Forest Biomass Dynamics.” Remote Sensing of Environment 151:124–137. https://doi.org/10.1016/j.rse.2013.05.033.
  • Powell, S. L., W. B. Cohen, S. P. Healey, R. E. Kennedy, G. G. Moisen, K. B. Pierce, and J. L. Ohmann. 2010. “Quantification of Live Aboveground Forest Biomass Dynamics with Landsat Time-Series and Field Inventory Data: A Comparison of Empirical Modeling Approaches.” Remote Sensing of Environment 114 (5): 1053–1068. https://doi.org/10.1016/j.rse.2009.12.018.
  • R Core Team. 2013. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0, ISBN 3-900051-07-0. http://www.R-project.org/.
  • Reddy, D. S., and P. R. C. Prasad. 2018. “Prediction of Vegetation Dynamics Using NDVI Time Series Data and LSTM.” Modeling Earth Systems and Environment 4 (2018): 409–419.
  • Roussel, J.-R., and D. Auty. 2019. “LidR: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications. R Package Version 2.0.3.” https://CRAN.R-project.org/package=lidR.
  • Rozendaal, D. M., D. Requena Suarez, V. De Sy, V. Avitabile, S. Carter, C. Y. Adou Yao, E. Alvarez-Davila, et al. 2022. “Aboveground Forest Biomass Varies Across Continents, Ecological Zones and Successional Stages: Refined IPCC Default Values for Tropical and Subtropical Forests.” Environmental Research Letters 17 (1): 014047.
  • Saatchi, S. S., N. L. Harris, S. Brown, M. Lefsky, E. T. Mitchard, W. Salas, B. R. Zutta, et al. 2011. “Benchmark Map of Forest Carbon Stocks in Tropical Regions Across Three Continents.” Proceedings of the national academy of sciences 108 (24): 9899–9904.
  • Saatchi, S. S., R. A. Houghton, R. C. Dos Santos Alvala, J. V. Soares, and Y. Yu. 2007. “Distribution of Aboveground Live Biomass in the Amazon Basin.” Global Change Biology 13 (4): 816–837. https://doi.org/10.1111/j.1365-2486.2007.01323.x.
  • Santos, E. G. D., Y. E. Shimabukuro, Y. Mendes De Moura, F. G. Gonçalves, A. Jorge, K. A. Gasparini, E. Arai, V. Duarte, and J. P. Ometto. 2019. “Multi-Scale Approach to Estimating Aboveground Biomass in the Brazilian Amazon Using Landsat and LiDAR Data.” International Journal of Remote Sensing 40 (22): 8635–8645.
  • Schmidhuber, J. 2015. “Deep Learning in Neural Networks: An Overview.” Neural Networks 61:85–117. https://doi.org/10.1016/j.neunet.2014.09.003.
  • Schnitzer, S. A., S. J. DeWalt, and J. Chave. 2006. “Censusing and Measuring Lianas: A Quantitative Comparison of the Common Methods 1.” Biotropica 38 (5): 581–591. https://doi.org/10.1111/j.1744-7429.2006.00187.x.
  • Schwarz, G. 1978. “Estimating the dimension of a model.” The Annals of Statistics 6 (2): 461–464.
  • Sherstinsky, A. 2020. “Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network.” Physica D: Nonlinear Phenomena 404:132306. https://doi.org/10.1016/j.physd.2019.132306.
  • Silveira, E. M., Silva, S. H. G., Acerbi-Junior, F. W., Carvalho, M. C., Carvalho, L. M. T., Scolforo, J. R. S., and Wulder, M. A. 2019. “Object-based random forest modelling of aboveground forest biomass outperforms a pixel-based approach in a heterogeneous and mountain tropical environment.“ International Journal of Applied Earth Observation and Geoinformation 78:175–188.
  • Tang, P., J. Chanussot, S. Guo, W. Zhang, L. Qie, P. Zhang, H. Fang, and P. Du. 2024. “Deep Learning with Multi-Scale Temporal Hybrid Structure for Robust Crop Mapping.” ISPRS Journal of Photogrammetry and Remote Sensing 209:117–132. https://doi.org/10.1016/j.isprsjprs.2024.01.025.
  • Tucker, C. J. 1979. “Red and Photographic Infrared Linear Combinations for Monitoring Vegetation.” Remote Sensing and Environment 8 (2): 127–150.
  • Wang, B., Y. Chen, Z. Yan, and W. Liu. 2024. “Integrating Remote Sensing Data and CNN-LSTM-Attention Techniques for Improved Forest Stock Volume Estimation: A Comprehensive Analysis of Baishanzu Forest Park, China.” Remote Sensing 16 (2): 324. https://doi.org/10.3390/rs16020324.
  • Wang, V., J. Gao, and L. Schwendenmann. 2020. “Assessing Changes of Urban Vegetation Cover and Aboveground Carbon Stocks Using LiDAR and Landsat Imagery Data in Auckland, New Zealand.” International Journal of Remote Sensing 41 (6): 2140–2158. https://doi.org/10.1080/01431161.2019.1685716.
  • Wulder, M. A., S. M. Ortlepp, J. C. White, and S. Maxwell. 2008. “Evaluation of Landsat-7 SLC-Off Image Products for Forest Change Detection.” Canadian Journal of Remote Sensing 34 (2): 93–99. https://doi.org/10.5589/m08-020.
  • Yavaşlı, D. D. 2016. “Estimation of Above Ground Forest Biomass at Muğla Using ICESat/GLAS and Landsat Data.” Remote Sensing Applications: Society & Environment 4:211–218. https://doi.org/10.1016/j.rsase.2016.11.004.
  • Yuan, Y., L. Lin, L. Z. Huo, Y. L. Kong, Z. G. Zhou, B. Wu, and Y. Jia. 2020. “Using an Attention-Based LSTM Encoder–Decoder Network for Near Real-Time Disturbance Detection.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 13:1819–1832. https://doi.org/10.1109/JSTARS.2020.2988324.
  • Zanne, A. E., G. Lopez-Gonzalez, D. A. Coomes, J. Ilic, S. Jansen, S. L. Lewis, R. B. Miller, N. G. Swenson, M. C. Wiemann, and J. Chave. 2009. “.” Dryad Digital Repository.
  • Zhu, Z., C. E. Woodcock, and P. Olofsson. 2012. “Continuous Monitoring of Forest Disturbance Using All Available Landsat Imagery.” Remote Sensing of Environment 122:75–91. https://doi.org/10.1016/j.rse.2011.10.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.