0
Views
0
CrossRef citations to date
0
Altmetric
Research article

The impact of volcanic eruptions, pyrocumulonimbus plumes, and the Arctic polar vortex intrusions on aerosol loading over Tomsk (Western Siberia, Russia) as observed by lidar from 2018 to 2022

ORCID Icon, , &
Pages 5464-5505 | Received 17 Nov 2023, Accepted 29 Jun 2024, Published online: 26 Jul 2024

References

  • Adam, M., D. Nicolae, I. S. Stachlewska, A. Papayannis, and D. Balis. 2020. “Biomass Burning Events Measured by Lidars in EARLINET – Part 1: Data Analysis Methodology.” Atmospheric Chemistry & Physics 20 (22): 13905–13927. https://doi.org/10.5194/acp-20-13905-2020.
  • AMS (American Meteorological Society). n.d. “Glossary of Meteorology: Pyrocumulonimbus.” Accessed November 1, 2023. http://glossary.ametsoc.org/wiki/Pyrocumulonimbus.
  • Angarita, M., R. Grapenthin, S. Plank, F. J. Meyer, and H. Dietterich. 2022. “Quantifying Large-Scale Surface Change Using SAR Amplitude Images: Crater Morphology Changes During the 2019–2020 Shishaldin Volcano Eruption.” Journal of Geophysical Research: Solid Earth 127 (8): e2022JB024344. https://doi.org/10.1029/2022JB024344.
  • Ansmann, A., H. Baars, A. Chudnovsky, I. Mattis, I. Veselovskii, M. Haarig, P. Seifert, R. Engelmann, and U. Wandinger. 2018. “Extreme Levels of Canadian Wildfire Smoke in the Stratosphere Over Central Europe on 21–22 August 2017.” Atmospheric Chemistry & Physics 18 (16): 11831–11845. https://doi.org/10.5194/acp-18-11831-2018.
  • Ansmann, A., K. Ohneiser, A. Chudnovsky, H. Baars, and R. Engelmann. 2021. “CALIPSO Aerosol-Typing Scheme Misclassified Stratospheric Fire Smoke: Case Study from the 2019 Siberian Wildfire Season.” Frontiers in Environmental Science 9:769852. https://doi.org/10.3389/fenvs.2021.769852.
  • Ansmann, A., K. Ohneiser, A. Chudnovsky, D. A. Knopf, E. W. Eloranta, D. Villanueva, P. Seifert, et al. 2022. “Ozone Depletion in the Arctic and Antarctic Stratosphere Induced by Wildfire Smoke.” Atmospheric Chemistry & Physics 22 (17): 11701–11726. https://doi.org/10.5194/acp-22-11701-2022.
  • Arnold, F., V. Bürger, K. Gollinger, M. Roncossek, J. Schneider, and S. Spreng. 1998. “Observations of Nitric Acid Perturbations in the Winter Arctic Stratosphere: Evidence for PSC Sedimentation.” Journal of Atmospheric Chemistry 30 (1): 49–59. https://doi.org/10.1023/A:1006014003391.
  • Baars, H., A. Ansmann, K. Ohneiser, M. Haarig, R. Engelmann, D. Althausen, I. Hanssen, et al. 2019. “The Unprecedented 2017–2018 Stratospheric Smoke Event: Decay Phase and Aerosol Properties Observed with the EARLINET.” Atmospheric Chemistry & Physics 19 (23): 15183–15198. https://doi.org/10.5194/acp-19-15183-2019.
  • Balkanski, Y., G. Myhre, M. Gauss, G. Rädel, E. J. Highwood, and K. P. Shine. 2010. “Direct Radiative Effect of Aerosols Emitted by Transport: From Road, Shipping and Aviation.” Atmospheric Chemistry & Physics 10 (10): 4477–4489. https://doi.org/10.5194/acp-10-4477-2010.
  • Baron, A., P. Chazette, S. Khaykin, G. Payen, N. Marquestaut, N. Bègue, and V. Duflot. 2023. “Early Evolution of the Stratospheric Aerosol Plume Following the 2022 Hunga Tonga-Hunga Ha’apai Eruption: Lidar Observations from Reunion (21°S, 55°E).” Geophysical Research Letters 50 (10): e2022GL101751. https://doi.org/10.1029/2022GL101751.
  • Bazhenov, O. E. 2021. “Ozone Anomaly During Winter–Spring 2019–2020 in the Arctic and Over the North of Eurasia Using Satellite (Aura MLS/OMI) Observations.” Atmospheric and Oceanic Optics 34 (6): 643–648. https://doi.org/10.1134/S102485602106004X.
  • Bazhenov, O. E., A. A. Nevzorov, A. V. Nevzorov, S. I. Dolgii, and A. P. Makeev. 2020. “Disturbance of the Stratosphere Over Tomsk During Winter 2017/2018 Using Lidar and Aura MLS/OMI Observations.” Atmospheric and Oceanic Optics 33 (6): 622–628. https://doi.org/10.1134/S1024856020060068.
  • Bourassa, A. E., D. J. Zawada, L. A. Rieger, T. W. Warnock, M. Toohey, and D. A. Degenstein. 2023. “Tomographic Retrievals of Hunga Tonga-Hunga Ha’apai Volcanic Aerosol.” Geophysical Research Letters 50 (3): e2022GL101978. https://doi.org/10.1029/2022GL101978.
  • Bruckert, J., L. Hirsch, Á. Horváth, R. A. Kahn, T. Kölling, L. O. Muser, C. Timmreck, H. Vogel, S. Wallis, and G. A. Hoshyaripour. 2023. “Dispersion and Aging of Volcanic Aerosols After the La Soufrière Eruption in April 2021.” Journal of Geophysical Research Atmospheres 128 (8): e2022JD037694. https://doi.org/10.1029/2022JD037694.
  • Bruckert, J., G. A. Hoshyaripour, Á. Horváth, L. O. Muser, F. J. Prata, C. Hoose, and B. Vogel. 2022. “Online Treatment of Eruption Dynamics Improves the Volcanic Ash and SO2 Dispersion Forecast: Case of the 2019 Raikoke Eruption.” Atmospheric Chemistry & Physics 22 (5): 3535–3552. https://doi.org/10.5194/acp-22-3535-2022.
  • Burlakov, V. D., S. I. Dolgii, and A. V. Nevzorov. 2010. “A Three-Frequency Lidar for Sensing Microstructure Characteristics of Stratospheric Aerosols.” Instruments and Experimental Techniques 53 (6): 890–894. https://doi.org/10.1134/S0020441210060230.
  • Caffrey, P. F., M. D. Fromm, and G. P. Kablick III. 2018. “WRF-Chem Simulation of an East Asian Dust-Infused Baroclinic Storm (DIBS).” Journal of Geophysical Research Atmospheres 123 (13): 6880–6895. https://doi.org/10.1029/2017JD027848.
  • Castellnou, M., M. Bachfischer, M. Miralles, B. Ruiz, C. R. Stoof, and J. Vilà-Guerau de Arellano. 2022. “Pyroconvection Classification Based on Atmospheric Vertical Profiling Correlation with Extreme Fire Spread Observations.” Journal of Geophysical Research Atmospheres 127 (22): e2022JD036920. https://doi.org/10.1029/2022JD036920.
  • CDS (Climate Data Store). n.d. “ERA5 Hourly Data on Pressure Levels from 1940 to Present.” Accessed November 1, 2023. https://doi.org/10.24381/cds.bd0915c6.
  • Chaykovskii, A. P., A. P. Ivanov, S. B. Yu, A. V. El’nikov, G. F. Tulinov, I. I. Plusnin, O. A. Bukin, and B. B. Chen. 2005. “CIS-Linet Lidar Network for Monitoring Aerosol and Ozone: Methodology and Instrumentation.” Atmospheric and Oceanic Optics 18 (12): 958–964. https://ao.iao.ru/en/content/text?vol=18&issue=12&num=6.
  • Cheremisin, A. A., V. N. Marichev, D. A. Bochkovskii, P. V. Novikov, and I. I. Romanchenko. 2022. “Stratospheric Aerosol of Siberian Forest Fires According to Lidar Observations in Tomsk in August 2019.” Atmospheric and Oceanic Optics 35 (1): 57–64. https://doi.org/10.1134/S1024856022010043.
  • Chouza, F., T. Leblanc, J. Barnes, M. Brewer, P. Wang, and D. Koon. 2020. “Long-Term (1999–2019) Variability of Stratospheric Aerosol Over Mauna Loa, Hawaii, As Seen by Two Co-Located Lidars and Satellite Measurements.” Atmospheric Chemistry & Physics 20 (11): 6821–6839. https://doi.org/10.5194/acp-20-6821-2020.
  • Christian, K., J. Wang, C. Ge, D. Peterson, E. Hyer, J. Yorks, and M. McGill. 2019. “Radiative Forcing and Stratospheric Warming of Pyrocumulonimbus Smoke Aerosols: First Modeling Results with Multisensor (EPIC, CALIPSO, and CATS) Views from Space.” Geophysical Research Letters 46 (16): 10061–10071. https://doi.org/10.1029/2019GL082360.
  • Christian, K., J. Yorks, and S. Das. 2020. “Differences in the Evolution of Pyrocumulonimbus and Volcanic Stratospheric Plumes As Observed by CATS and CALIOP Space-Based Lidars.” Atmosphere 11 (10): 1035. https://doi.org/10.3390/atmos11101035.
  • CIMSS (Cooperative Institute for Meteorological Satellite Studies). n.d. “PyroCb.” Accessed November 1, 2023. http://pyrocb.ssec.wisc.edu.
  • Constantinescu, R., J. T. White, C. Connor, P. Cole, K. Fontijn, J. Barclay, and R. Robertson. 2024. “Estimation of Eruption Source Parameters for the 2021 La Soufrière Eruption (St Vincent): Implications for Quantification of Eruption Magnitude on Volcanic Islands.” Geological Society Special Publication 539 (1): 107–120. https://doi.org/10.1144/SP539-2023-38.
  • Coombs, M., K. Wallace, C. Cameron, J. Lyons, A. Wech, K. Angeli, and P. Cervelli. 2019. “Overview, Chronology, and Impacts of the 2016–2017 Eruption of Bogoslof Volcano, Alaska.” Bulletin of Volcanology 81 (11): 62. https://doi.org/10.1007/s00445-019-1322-9.
  • Damany-Pearce, L., B. Johnson, A. Wells, M. Osborne, J. Allan, C. Belcher, A. Jones, and J. Haywood. 2022. “Australian Wildfires Cause the Largest Stratospheric Warming Since Pinatubo and Extends the Lifetime of the Antarctic Ozone Hole.” Scientific Reports 12 (1): 12665. https://doi.org/10.1038/s41598-022-15794-3.
  • Das, S., P. R. Colarco, L. D. Oman, G. Taha, and O. Torres. 2021. “The Long-Term Transport and Radiative Impacts of the 2017 British Columbia Pyrocumulonimbus Smoke Aerosols in the Stratosphere.” Atmospheric Chemistry & Physics 21 (15): 12069–12090. https://doi.org/10.5194/acp-21-12069-2021.
  • Doglioni, G., V. Aquila, S. Das, P. R. Colarco, and D. Zardi. 2022. “Dynamical Perturbation of the Stratosphere by a Pyrocumulonimbus Injection of Carbonaceous Aerosols.” Atmospheric Chemistry & Physics 22 (17): 11049–11064. https://doi.org/10.5194/acp-22-11049-2022.
  • Dolgii, S. I., A. A. Nevzorov, A. V. Nevzorov, A. P. Makeev, O. A. Romanovskii, and O. V. Kharchenko. 2018. “Lidar Complex for Measurement of Vertical Ozone Distribution in the Upper Troposphere–Stratosphere.” Atmospheric and Oceanic Optics 31 (6): 702–708. https://doi.org/10.1134/S1024856018060209.
  • Dolgii, S. I., A. A. Nevzorov, A. V. Nevzorov, O. A. Romanovskii, and O. V. Kharchenko. 2017. “Intercomparison of Ozone Vertical Profile Measurements by Differential Absorption Lidar and IASI/MetOp Satellite in the Upper Troposphere–Lower Stratosphere.” Remote Sensing 9 (5): 447. https://doi.org/10.3390/rs9050447.
  • Dolgii, S., A. A. Nevzorov, A. V. Nevzorov, Y. Gridnev, and O. Kharchenko. 2020a. “Measurements of Ozone Vertical Profiles in the Upper Troposphere–Stratosphere Over Western Siberia by DIAL, MLS, and IASI.” Atmosphere 11 (2): 196. https://doi.org/10.3390/atmos11020196.
  • Dolgii, S., A. A. Nevzorov, A. V. Nevzorov, Y. Gridnev, and O. Kharchenko. 2020b. “Temperature Correction of the Vertical Ozone Distribution Retrieval at the Siberian Lidar Station Using the MetOp and Aura Data.” Atmosphere 11 (11): 1139. https://doi.org/10.3390/atmos11111139.
  • Dolgii, S., A. A. Nevzorov, A. V. Nevzorov, Y. Gridnev, O. Kharchenko, and O. A. Romanovskii. 2022. “Influence of Absorption Cross-Sections on Retrieving the Ozone Vertical Distribution at the Siberian Lidar Station.” Atmosphere 13 (2): 293. https://doi.org/10.3390/atmos13020293.
  • Esse, B., M. Burton, C. Hayer, R. Contreras-Arratia, T. Christopher, E. P. Joseph, M. Varnam, and C. Johnson. 2024. “SO2 Emissions During the 2021 Eruption of La Soufrière, St Vincent, Revealed with Back-Trajectory Analysis of TROPOMI Imagery.” Geological Society Special Publication 539 (1): 231–244. https://doi.org/10.1144/SP539-2022-77.
  • Fauria, K. E., M. Jutzeler, T. Mittal, A. K. Gupta, L. J. Kelly, J. Rausch, R. Bennartz, B. Delbridge, and L. Retailleau. 2023. “Simultaneous Creation of a Large Vapor Plume and Pumice Raft by the 2021 Fukutoku-Oka-No-Ba Shallow Submarine Eruption.” Earth and Planetary Science Letters 609:118076. https://doi.org/10.1016/j.epsl.2023.118076.
  • Finlayson-Pitts, B. J., and J. N. Pitts Jr. 2000. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications. San Diego, CA, USA: Academic Press.
  • Firstov, P. P., R. R. Akbashev, N. A. Zharinov, A. P. Maksimov, T. M. Manevich, and D. V. Mel’nikov. 2019. “Electrification of Eruptive Plumes Discharged by Shiveluch Volcano in Relation to the Character of the Responsible Explosion.” Journal of Volcanology and Seismology 13 (3): 172–184. https://doi.org/10.1134/S0742046319030035.
  • Fromm, M. D., G. P. Kablick III, and P. Caffrey. 2016. “Dust-Infused Baroclinic Cyclone Storm Clouds: The Evidence, Meteorology, and Some Implications.” Geophysical Research Letters 43 (24): 12643–12650. https://doi.org/10.1002/2016GL071801.
  • Fromm, M. D., G. P. Kablick, D. A. Peterson, R. A. Kahn, V. J. B. Flower, and C. J. Seftor. 2021. “Quantifying the Source Term and Uniqueness of the August 12, 2017 Pacific Northwest pyroCb Event.” Journal of Geophysical Research Atmospheres 126 (13): e2021JD034928. https://doi.org/10.1029/2021JD034928.
  • Fromm, M., D. T. Lindsey, R. Servranckx, G. Yue, T. Trickl, R. Sica, P. Doucet, and S. Godin-Beekmann. 2010. “The Untold Story of Pyrocumulonimbus.” Bulletin of the American Meteorological Society 91 (9): 1193–1210. https://doi.org/10.1175/2010BAMS3004.1.
  • Fromm, M., D. Peterson, and L. Di Girolamo. 2019. “The Primary Convective Pathway for Observed Wildfire Emissions in the Upper Troposphere and Lower Stratosphere: A Targeted Reinterpretation.” Journal of Geophysical Research Atmospheres 124 (23): 13254–13272. https://doi.org/10.1029/2019JD031006.
  • Fromm, M., R. Servranckx, B. J. Stocks, and D. A. Peterson. 2022. “Understanding the Critical Elements of the Pyrocumulonimbus Storm Sparked by High-Intensity Wildland Fire.” Communications Earth & Environment 3 (1): 243. https://doi.org/10.1038/s43247-022-00566-8.
  • Gerasimov, V. V., V. V. Zuev, and E. S. Savelieva. 2019. “Traces of Canadian Pyrocumulonimbus Clouds in the Stratosphere Over Tomsk in June-July, 1991.” Atmospheric and Oceanic Optics 32 (3): 316–323. https://doi.org/10.1134/S1024856019030096.
  • Gettelman, A., M. J. Mills, D. E. Kinnison, R. R. Garcia, A. K. Smith, D. R. Marsh, S. Tilmes, et al. 2019. “The Whole Atmosphere Community Climate Model Version 6 (WACCM6).” Journal of Geophysical Research Atmospheres 124 (23): 12380–12403. https://doi.org/10.1029/2019JD030943.
  • Girina, O. A., E. A. Loupian, I. A. Uvarov, and L. S. Kramareva. 2019. “Raikoke Volcano Eruption on 21 June 2019.” Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa 16 (3): 303–307. https://doi.org/10.21046/2070-7401-2019-16-3-303-307.
  • Grebennikov, V. S., D. S. Zubachev, V. A. Korshunov, D. G. Sakhibgareev, and I. A. Chernikh. 2020. “Observations of Stratospheric Aerosol at Rosgidromet Lidar Stations After the Eruption of the Raikoke Volcano in June 2019.” Atmospheric and Oceanic Optics 33 (5): 519–523. https://doi.org/10.1134/S1024856020050097.
  • Guimond, S. R., J. Reisner, and M. Dubey. 2023. “The Dynamics of Megafire Smoke Plumes in Climate Models: Why a Converged Solution Matters for Physical Interpretations.” Journal of Advances in Modeling Earth Systems 15 (4): e2022MS003432. https://doi.org/10.1029/2022MS003432.
  • Gupta, A. K., R. Bennartz, K. E. Fauria, and T. Mittal. 2022. “Eruption Chronology of the December 2021 to January 2022 Hunga Tonga-Hunga Ha’apai Eruption Sequence.” Communications Earth & Environment 3 (1): 314. https://doi.org/10.1038/s43247-022-00606-3.
  • GVP (Global Volcanism Program). n.d. “Smithsonian Institution, National Museum of Natural History, Global Volcanism Program.” Accessed November 1, 2023. https://volcano.si.edu.
  • Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz‐Sabater, J. Nicola, et al. 2020. “The ERA5 Global Reanalysis.” Quarterly Journal of the Royal Meteorological Society 146 (730): 1999–2049. https://doi.org/10.1002/qj.3803.
  • Hitchman, M. H., M. McKay, and C. R. Trepte. 1994. “A Climatology of Stratospheric Aerosol.” Journal of Geophysical Research 99 (D10): 20689–20700. https://doi.org/10.1029/94JD01525.
  • Ivanov, V. N., V. S. Grebennikov, V. A. Korshunov, and D. G. Sakhibgareev. 2023. “Observations of Stratospheric Aerosol at Roshydromet Lidar Stations After the Eruption of the Submarine Hunga Tonga Volcano in January 2022.” Atmospheric and Oceanic Optics 36 (5): 517–521. https://doi.org/10.1134/S1024856023050111.
  • Iwasaka, Y., T. Shibata, H. Adachi, T. Ojio, M. Fujiwara, K. Shiraishi, K. Miyagawa-Kondoh, and H. Nakane. 1996. “Polar Vortex Meandering and Stratospheric Aerosol Distribution: Lidar Measurements at Fairbanks, Alaska.” Journal of Geomagnetism and Geoelectricity 48 (9): 1157–1167. https://doi.org/10.5636/jgg.48.1157.
  • Jaross, G. 2017. “OMPS-NPP L2 NM Ozone (O3) Total Column Swath Orbital V2, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC.” Accessed April 20, 2024. https://doi.org/10.5067/0WF4HAAZ0VHK.
  • Jing, D., Y. He, Z. Yin, F. Liu, Y. Yi, and F. Yi. 2023. “Evolution of Aerosol Plumes from 2019 Raikoke Volcanic Eruption Observed with Polarization Lidar Over Central China.” Atmospheric Environment 309:119880. https://doi.org/10.1016/j.atmosenv.2023.119880.
  • Juliano, T. W., P. A. Jiménez, B. Kosović, T. Eidhammer, G. Thompson, L. K. Berg, J. Fast, A. Motley, and A. Polidori. 2022. “Smoke from 2020 United States Wildfires Responsible for Substantial Solar Energy Forecast Errors.” Environmental Research Letters 17 (3): 034010. https://doi.org/10.1088/1748-9326/ac5143.
  • Kablick, G. P., III, D. R. Allen, M. D. Fromm, and G. E. Nedoluha. 2020. “Australian pyroCb Smoke Generates Synoptic‐Scale Stratospheric Anticyclones.” Geophysical Research Letters 47 (13): e2020GL088101. https://doi.org/10.1029/2020GL088101.
  • Khaykin, S., B. Legras, S. Bucci, P. Sellitto, L. Isaksen, F. Tencé, S. Bekki, et al. 2020. “The 2019/20 Australian Wildfires Generated a Persistent Smoke-Charged Vortex Rising Up to 35 km Altitude.” Communications Earth & Environment 1:22. https://doi.org/10.1038/s43247-020-00022-5.
  • Khaykin, S., A. Podglajen, F. Ploeger, J.-U. Grooß, F. Tence, S. Bekki, K. Khlopenkov, et al. 2022. “Global Perturbation of Stratospheric Water and Aerosol Burden by Hunga Eruption.” Communications Earth & Environment 3 (1): 316. https://doi.org/10.1038/s43247-022-00652-x.
  • Kloss, C., G. Berthet, P. Sellitto, F. Ploeger, S. Bucci, S. Khaykin, F. Jégou, et al. 2019. “Transport of the 2017 Canadian Wildfire Plume to the Tropics via the Asian Monsoon Circulation.” Atmospheric Chemistry & Physics 19 (21): 13547–13567. https://doi.org/10.5194/acp-19-13547-2019.
  • Kloss, C., G. Berthet, P. Sellitto, F. Ploeger, G. Taha, M. Tidiga, M. Eremenko, et al. 2021. “Stratospheric Aerosol Layer Perturbation Caused by the 2019 Raikoke and Ulawun Eruptions and Their Radiative Forcing.” Atmospheric Chemistry & Physics 21 (1): 535–560. https://doi.org/10.5194/acp-21-535-2021.
  • Kloss, C., P. Sellitto, B. Legras, J. ‐. Vernier, F. Jégou, M. V. Ratnam, B. S. Kumar, B. L. Madhavan, and G. Berthet. 2020. “Impact of the 2018 Ambae Eruption on the Global Stratospheric Aerosol Layer and Climate.” Journal of Geophysical Research Atmospheres 125 (14): e2020JD032410. https://doi.org/10.1029/2020JD032410.
  • Kloss, C., P. Sellitto, J.-B. Renard, A. Baron, N. Bègue, B. Legras, G. Berthet, et al. 2022. “Aerosol Characterization of the Stratospheric Plume from the Volcanic Eruption at Hunga Tonga 15 January 2022.” Geophysical Research Letters 49 (16): e2022GL099394. https://doi.org/10.1029/2022GL099394.
  • König, N., P. Braesicke, and T. von Clarmann. 2019. “Tropopause Altitude Determination from Temperature Profile Measurements of Reduced Vertical Resolution.” Atmospheric Measurement Techniques 12 (7): 4113–4129. https://doi.org/10.5194/amt-12-4113-2019.
  • Korshunov, V. A. 2022. “Lidar Observations of Stratospheric Aerosols at Obninsk in 2012-2021: Influence of Volcanic Eruptions and Biomass Burning.” Fundamental and Applied Climatology 8 (3): 31–51. https://doi.org/10.21513/2410-8758-2022-3-31-51.
  • Korshunov, V. A., and D. S. Zubachev. 2017. “Characteristics of Stratospheric Aerosol from Data of Lidar Measurements Over Obninsk in 2012–2015.” Atmospheric and Oceanic Optics 30 (3): 226–233. https://doi.org/10.1134/S1024856017030083.
  • Kremser, S., L. W. Thomason, M. von Hobe, M. Hermann, T. Deshler, C. Timmreck, M. Toohey, et al. 2016. “Stratospheric Aerosol – Observations, Processes, and Impact on Climate.” Reviews of Geophysics 54 (2): 278–335. https://doi.org/10.1002/2015RG000511.
  • Langenbach, A., G. Baumgarten, J. Fiedler, F.-J. Lübken, C. von Savigny, and J. Zalach. 2019. “Year-Round Stratospheric Aerosol Backscatter Ratios Calculated from Lidar Measurements Above Northern Norway.” Atmospheric Measurement Techniques 12 (7): 4065–4076. https://doi.org/10.5194/amt-12-4065-2019.
  • Lee, H.-H., K. A. Lundquist, and Q. Tang. 2023. “Pyrocumulonimbus Events Over British Columbia in 2017: An Ensemble Model Study of Parameter Sensitivities and Climate Impacts of Wildfire Smoke in the Stratosphere.” Journal of Geophysical Research Atmospheres 128 (2): e2022JD037648. https://doi.org/10.1029/2022JD037648.
  • Lestrelin, H., B. Legras, A. Podglajen, and M. Salihoglu. 2021. “Smoke-Charged Vortices in the Stratosphere Generated by Wildfires and Their Behaviour in Both Hemispheres: Comparing Australia 2020 to Canada 2017.” Atmospheric Chemistry & Physics 21 (9): 7113–7134. https://doi.org/10.5194/acp-21-7113-2021.
  • Liu, Q., L. Gui, J. Liu, G. Ventura, Q. Yang, Z. Wang, Z. Tang, M. Tao, and X. Shen. 2023. “Multi-Satellite Detection of Long-Range Transport and Transformation of Atmospheric Emissions from the Hunga Tonga-Hunga Ha’apai Volcano.” Remote Sensing 15 (10): 2661. https://doi.org/10.3390/rs15102661.
  • Lu, J., S. Lou, X. Huang, L. Xue, K. Ding, T. Liu, Y. Ma, W. Wang, and A. Ding. 2023. “Stratospheric Aerosol and Ozone Responses to the Hunga Tonga-Hunga Ha’apai Volcanic Eruption.” Geophysical Research Letters 50 (4): e2022GL102315. https://doi.org/10.1029/2022GL102315.
  • Madhavan, B. L., R. Kudo, M. V. Ratnam, C. Kloss, G. Berthet, and P. Sellitto. 2023. “Stratospheric Aerosol Characteristics from the 2017–2019 Volcanic Eruptions Using the SAGE III/ISS Observations.” Remote Sensing 15 (1): 29. https://doi.org/10.3390/rs15010029.
  • Maeno, F., T. Kaneko, M. Ichihara, Y. J. Suzuki, A. Yasuda, K. Nishida, and T. Ohminato. 2022. “Seawater-Magma Interactions Sustained the High Column During the 2021 Phreatomagmatic Eruption of Fukutoku-Oka-No-Ba.” Communications Earth & Environment 3 (1): 260. https://doi.org/10.1038/s43247-022-00594-4.
  • Marichev, V. N. 2016. “Combined Method for Optical Sensing of the Lower and Middle Atmosphere.” Atmospheric and Oceanic Optics 29 (4): 348–352. https://doi.org/10.1134/S1024856016040096.
  • Marichev, V. N., and D. A. Bochkovskii. 2020. “Lidar Complex of a Small Station of High-Altitude Atmosphere Sounding of IAO SB RAS.” Optika Atmosfery i Okeana 33 (5): 399–406. https://doi.org/10.15372/AOO20200510.
  • Marichev, V. N., D. A. Bochkovsky, and A. I. Elizarov. 2022. “Optical Aerosol Model of the Western Siberian Stratosphere Based on Lidar Monitoring Results.” Atmospheric and Oceanic Optics 35 (Suppl 1): S64–S69. https://doi.org/10.1134/S1024856023010104.
  • Martinsson, B. G., J. Friberg, O. S. Sandvik, and M. K. Sporre. 2022. “Five-Satellite-Sensor Study of the Rapid Decline of Wildfire Smoke in the Stratosphere.” Atmospheric Chemistry & Physics 22 (6): 3967–3984. https://doi.org/10.5194/acp-22-3967-2022.
  • Mills, M. J., J. H. Richter, S. Tilmes, B. Kravitz, D. G. MacMartin, A. A. Glanville, J. J. Tribbia, et al. 2017. “Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled CESM1(WACCM).” Journal of Geophysical Research Atmospheres 122 (23): 13061–13078. https://doi.org/10.1002/2017JD027006.
  • Müller, R., and T. Peter. 1992. “The Numerical Modeling of the Sedimentation of Polar Stratospheric Cloud Particles.” Berichte der Bunsengesellschaft für physikalische Chemie 96 (3): 353–361. https://doi.org/10.1002/bbpc.19920960323.
  • NASA (National Aeronautics and Space Administration). n.d. “Products – calipso standard Browse Images - Version 4.51.” Accessed November 1, 2023. https://www-calipso.larc.nasa.gov/products/lidar/browse_images/std_v451_index.php.
  • Nevzorov, A. V., O. E. Bazhenov, A. V. Elnikov, and V. A. Loginov. 2021. “Comparison of Time Series of Integrated Aerosol Content in the Stratosphere and Total Ozone Content.” Atmospheric and Oceanic Optics 34 (5): 411–416. https://doi.org/10.1134/S102485602105016X.
  • Nevzorov, A. V., S. I. Dolgii, A. P. Makeev, and A. V. El’nikov. 2019. “Results of Observations of Aerosol from North American Forest Fires in the Stratosphere Over Tomsk in Late Summer and Fall of 2017.” Optika Atmosfery i Okeana 32 (2): 162–167. https://doi.org/10.15372/AOO20190211.
  • Newhall, C. G., and S. Self. 1982. “The Volcanic Explosivity Index (VEI) an Estimate of Explosive Magnitude for Historical Volcanism.” Journal of Geophysical Research Oceans 87 (C2): 1231–1238. https://doi.org/10.1029/JC087iC02p01231.
  • Newman, P. A. 2010. “Chemistry and Dynamics of the Antarctic Ozone Hole.” In The Stratosphere: Dynamics, Transport, and Chemistry, Geophysical Monograph Series, edited by L. M. Polvani, A. H. Sobel, and D. W. Waugh, 157–171. Washington, DC, USA: American Geophysical Union.
  • NOAA (National Oceanic and Atmospheric Administration). n.d. “HYSPLIT.” Accessed November 1, 2023. https://www.arl.noaa.gov/hysplit.
  • Ohneiser, K., A. Ansmann, B. Kaifler, A. Chudnovsky, B. Barja, D. A. Knopf, N. Kaifler, et al. 2022. “Australian Wildfire Smoke in the Stratosphere: The Decay Phase in 2020/2021 and Impact on Ozone Depletion.” Atmospheric Chemistry & Physics 22 (11): 7417–7442. https://doi.org/10.5194/acp-22-7417-2022.
  • Ohneiser, K., A. Ansmann, J. Witthuhn, H. Deneke, A. Chudnovsky, G. Walter, and F. Senf. 2023. “Self-Lofting of Wildfire Smoke in the Troposphere and Stratosphere: Simulations and Space Lidar Observations.” Atmospheric Chemistry & Physics 23 (4): 2901–2925. https://doi.org/10.5194/acp-23-2901-2023.
  • Peterson, D. A., J. R. Campbell, E. J. Hyer, M. D. Fromm, G. P. Kablick III, J. H. Cossuth, and M. T. DeLand. 2018. “Wildfire-Driven Thunderstorms Cause a Volcano-Like Stratospheric Injection of Smoke.” Npj Climate and Atmospheric Science 1:30. https://doi.org/10.1038/s41612-018-0039-3.
  • Peterson, D. A., M. D. Fromm, R. H. McRae, J. R. Campbell, E. J. Hyer, G. Taha, C. P. Camacho, G. P. Kablick III, C. C. Schmidt, and M. T. DeLand. 2021. “Australia’s Black Summer Pyrocumulonimbus Super Outbreak Reveals Potential for Increasingly Extreme Stratospheric Smoke Events.” Npj Climate and Atmospheric Science 4 (1): 38. https://doi.org/10.1038/s41612-021-00192-9.
  • Petkov, B. H., V. Vitale, P. Di Carlo, O. Drofa, D. Mastrangelo, A. R. D. Smedley, H. Diémoz, et al. 2023. “An Unprecedented Arctic Ozone Depletion Event During Spring 2020 and Its Impacts Across Europe.” Journal of Geophysical Research Atmospheres 128 (3): e2022JD037581. https://doi.org/10.1029/2022JD037581.
  • Pumphrey, H. C., M. J. Schwartz, M. L. Santee, G. P. Kablick III, M. D. Fromm, and N. J. Livesey. 2021. “Microwave Limb Sounder (MLS) Observations of Biomass Burning Products in the Stratosphere from Canadian Forest Fires in August 2017.” Atmospheric Chemistry & Physics 21 (22): 16645–16659. https://doi.org/10.5194/acp-21-16645-2021.
  • Ridley, D. A., S. Solomon, J. E. Barnes, V. D. Burlakov, T. Deshler, S. I. Dolgii, A. B. Herber, et al. 2014. “Total Volcanic Stratospheric Aerosol Optical Depths and Implications for Global Climate Change.” Geophysical Research Letters 41 (22): 7763–7769. https://doi.org/10.1002/2014GL061541.
  • Rieger, L. A., W. J. Randel, A. E. Bourassa, and S. Solomon. 2021. “Stratospheric Temperature and Ozone Anomalies Associated with the 2020 Australian New Year Fires.” Geophysical Research Letters 48 (24): e2021GL095898. https://doi.org/10.1029/2021GL095898.
  • Robock, A. 2000. “Volcanic Eruptions and Climate.” Reviews of Geophysics 38 (2): 191–219. https://doi.org/10.1029/1998RG000054.
  • Sassen, K., M. K. Griffin, and G. C. Dodd. 1989. “Optical Scattering and Microphysical Properties of Subvisual Cirrus Clouds, and Climatic Implications.” Journal of Applied Meteorology & Climatology 28 (2): 91–98. https://doi.org/10.1175/1520-0450(1989)028<0091:OSAMPO>2.0.CO;2.
  • Schneider, D. J., A. R. Van Eaton, and K. L. Wallace. 2020. “Satellite Observations of the 2016–2017 Eruption of Bogoslof Volcano: Aviation and Ash Fallout Hazard Implications from a Water-Rich Eruption.” Bulletin of Volcanology 82 (3): 29. https://doi.org/10.1007/s00445-020-1361-2.
  • Schoeberl, M. R., Y. Wang, R. Ueyama, G. Taha, and W. Yu. 2023. “The Cross Equatorial Transport of the Hunga Tonga-Hunga Ha’apai Eruption Plume.” Geophysical Research Letters 50 (4): e2022GL102443. https://doi.org/10.1029/2022GL102443.
  • Siddaway, J. M., and S. V. Petelina. 2011. “Transport and Evolution of the 2009 Australian Black Saturday Bushfire Smoke in the Lower Stratosphere Observed by OSIRIS on Odin.” Journal of Geophysical Research Atmospheres 116 (D6): D06203. https://doi.org/10.1029/2010JD015162.
  • Solomon, S., K. Stone, P. Yu, D. M. Murphy, D. Kinnison, A. R. Ravishankara, and P. Wang. 2023. “Chlorine Activation and Enhanced Ozone Depletion Induced by Wildfire Aerosol.” Nature 615 (7951): 259–264. https://doi.org/10.1038/s41586-022-05683-0.
  • Stein, A. F., R. R. Draxler, G. D. Rolph, B. J. B. Stunder, M. D. Cohen, and F. Ngan. 2015. “NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System.” Bulletin of the American Meteorological Society 96 (12): 2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1.
  • Taha, G., R. Loughman, P. R. Colarco, T. Zhu, L. W. Thomason, and G. Jaross. 2022. “Tracking the 2022 Hunga Tonga-Hunga Ha’apai Aerosol Cloud in the Upper and Middle Stratosphere Using Space-Based Observations.” Geophysical Research Letters 49 (19): e2022GL100091. https://doi.org/10.1029/2022GL100091.
  • Taylor, I. A., R. G. Grainger, A. T. Prata, S. R. Proud, T. A. Mather, and D. M. Pyle. 2023. “A Satellite Chronology of Plumes from the April 2021 Eruption of La Soufrière, St Vincent.” Atmospheric Chemistry & Physics 23 (24): 15209–15234. https://doi.org/10.5194/acp-23-15209-2023.
  • Tazi, K., E. D. Salas-Porras, A. Braude, D. Okoh, K. D. Lamb, D. Watson-Parris, P. Harder, and N. Meinert. 2022a. “PYROCAST: A Machine Learning Pipeline to Forecast Pyrocumulonimbus (PyroCb) Clouds.” arXiv. https://doi.org/10.48550/arXiv.2211.13052.
  • Tazi, K., E. D. Salas-Porras, A. Braude, D. Okoh, K. D. Lamb, D. Watson-Parris, P. Harder, and N. Meinert. 2022b. “PYROCAST: Machine Learning Pipeline for Pyrocumulonimbus (pyroCb) Forecasting.” Accessed November 1, 2023. https://spaceml.org/repo/project/63691212f97150000d504d4d.
  • Thomason, L. W., and T. Knepp. 2023. “Quantifying SAGE II (1984–2005) and SAGE III/ISS (2017–2022) Observations of Smoke in the Stratosphere.” Atmospheric Chemistry & Physics 23 (18): 10361–10381. https://doi.org/10.5194/acp-23-10361-2023.
  • Thomason, L. W., M. Kovilakam, A. Schmidt, C. von Savigny, T. Knepp, and L. Rieger. 2021. “Evidence for the Predictability of Changes in the Stratospheric Aerosol Size Following Volcanic Eruptions of Diverse Magnitudes Using Space-Based Instrument.” Atmospheric Chemistry & Physics 21 (2): 1143–1158. https://doi.org/10.5194/acp-21-1143-2021.
  • Torres, O., P. K. Bhartia, G. Taha, H. Jethva, S. Das, P. Colarco, N. Krotkov, A. Omar, and C. Ahn. 2020. “Stratospheric Injection of Massive Smoke Plume from Canadian Boreal Fires in 2017 As Seen by DSCOVR‐EPIC, CALIOP, and OMPS‐LP Observations.” Journal of Geophysical Research Atmospheres 125 (10): e2020JD032579. https://doi.org/10.1029/2020JD032579.
  • Trickl, T., H. Giehl, H. Jäger, and H. Vogelmann. 2013. “35 Yr of Stratospheric Aerosol Measurements at Garmisch-Partenkirchen: From Fuego to Eyjafjallajökull, and Beyond.” Atmospheric Chemistry & Physics 13 (10): 5205–5225. https://doi.org/10.5194/acp-13-5205-2013.
  • Trickl, T., H. Vogelmann, M. D. Fromm, H. Jäger, M. Perfahl, and W. Steinbrecht. 2024. “Measurement Report: Violent Biomass Burning and Volcanic Eruptions – a New Period of Elevated Stratospheric Aerosol Over Central Europe (2017 to 2023) in a Long Series of Observations.” Atmospheric Chemistry & Physics 24 (3): 1997–2021. https://doi.org/10.5194/acp-24-1997-2024.
  • University of Wyoming. n.d. “Wyoming Weather Web.” Accessed November 1, 2023. https://weather.uwyo.edu/upperair/sounding.html.
  • Vaughan, G., D. Wareing, and H. Ricketts. 2021. “Measurement Report: Lidar Measurements of Stratospheric Aerosol Following the 2019 Raikoke and Ulawun Volcanic Eruptions.” Atmospheric Chemistry & Physics 21 (7): 5597–5604. https://doi.org/10.5194/acp-21-5597-2021.
  • Vernier, J.-P., T. Aubry, C. Timmreck, A. Schmidt, L. Clarisse, F. Prata, N. Theys, et al. 2023. “The 2019 Raikoke Eruption As a Testbed for Rapid Assessment of Volcanic Atmospheric Impacts by the Volcano Response Group.” EGUsphere. https://doi.org/10.5194/egusphere-2023-1116.
  • Viatte, C., K. Strong, C. Paton-Walsh, J. Mendonca, N. T. O’Neill, and J. R. Drummond. 2013. “Measurements of CO, HCN, and C2H6 Total Columns in Smoke Plumes Transported from the 2010 Russian Boreal Forest Fires to the Canadian High Arctic.” Atmosphere-Ocean 51 (5): 522–531. https://doi.org/10.1080/07055900.2013.823373.
  • Wandinger, U., V. Freudenthaler, H. Baars, A. Amodeo, R. Engelmann, I. Mattis, S. Groß, et al. 2016. “EARLINET Instrument Intercomparison Campaigns: Overview on Strategy and Results.” Atmospheric Measurement Techniques 9 (3): 1001–1023. https://doi.org/10.5194/amt-9-1001-2016.
  • Wang, P., S. Solomon, and K. Stone. 2023. “Stratospheric Chlorine Processing After the 2020 Australian Wildfires Derived from Satellite Data.” Proceedings of the National Academy of Sciences 120 (11): e2213910120. https://doi.org/10.1073/pnas.2213910120.
  • Whaley, C., K. Strong, C. Adams, A. E. Bourassa, W. H. Daffer, D. A. Degenstein, H. Fast, et al. 2013. “Using FTIR Measurements of Stratospheric Composition to Identify Midlatitude Polar Vortex Intrusions Over Toronto.” Journal of Geophysical Research Atmospheres 118 (22): 12766–12783. https://doi.org/10.1002/2013JD020577.
  • Wilkerson, J. T., M. Z. Jacobson, A. Malwitz, S. Balasubramanian, R. Wayson, G. Fleming, A. D. Naiman, and S. K. Lele. 2010. “Analysis of Emission Data from Global Commercial Aviation: 2004 and 2006.” Atmospheric Chemistry & Physics 10 (13): 6391–6408. https://doi.org/10.5194/acp-10-6391-2010.
  • Woods, D. C., and M. T. Osborn. 2001. “Twenty-Six Years of Lidar Monitoring of Northern Midlatitude Stratospheric Aerosols.” Proceedings of the International Society for Optical Engineering(SPIE), 249–255. https://doi.org/10.1117/12.413871.
  • WPIE (Worldwide PyroCb Information Exchange). n.d. “Worldwide PyroCb Information Exchange.” Accessed November 1, 2023. https://groups.io/g/pyrocb.
  • Yamanouchi, S., S. Conway, K. Strong, O. Colebatch, E. Lutsch, S. Roche, J. Taylor, C. H. Whaley, and A. Wiacek. 2023. “Network for the Detection of Atmospheric Composition Change (NDACC) Fourier Transform Infrared (FTIR) Trace Gas Measurements at the University of Toronto Atmospheric Observatory from 2002 to 2020.” Earth System Science Data 15 (8): 3387–3418. https://doi.org/10.5194/essd-15-3387-2023.
  • Yu, P., S. M. Davis, O. B. Toon, R. W. Portmann, C. G. Bardeen, J. E. Barnes, H. Telg, C. Maloney, and K. H. Rosenlof. 2021. “Persistent Stratospheric Warming Due to 2019–2020 Australian Wildfire Smoke.” Geophysical Research Letters 48 (7): e2021GL092609. https://doi.org/10.1029/2021GL092609.
  • Yu, P., R. W. Portmann, Y. Peng, C.-C. Liu, Y. Zhu, E. Asher, Z. Bai, et al. 2023. “Radiative Forcing from the 2014–2022 Volcanic and Wildfire Injections.” Geophysical Research Letters 50 (13): e2023GL103791. https://doi.org/10.1029/2023GL103791.
  • Yu, P., O. B. Toon, C. G. Bardeen, Y. Zhu, K. H. Rosenlof, R. W. Portmann, T. D. Thornberry, et al. 2019. “Black Carbon Lofts Wildfire Smoke High into the Stratosphere to Form a Persistent Plume.” Science 365 (6453): 587–590. https://doi.org/10.1126/science.aax1748.
  • Zhang, Z., L. Mu, and C. Li. 2022. “Comparison of Planetary Boundary Layer Height Derived from Lidar in AD-Net and ECMWFs Reanalysis Data Over East Asia.” Atmosphere 13 (12): 1976. https://doi.org/10.3390/atmos13121976.
  • Zhu, Y., C. G. Bardeen, S. Tilmes, M. J. Mills, X. Wang, V. L. Harvey, G. Taha, et al. 2022. “Perturbations in Stratospheric Aerosol Evolution Due to the Water-Rich Plume of the 2022 Hunga-Tonga Eruption.” Communications Earth & Environment 3 (1): 248. https://doi.org/10.1038/s43247-022-00580-w.
  • Zuev, V. V. 2000. “Siberian Lidar Station – the Unique Experimental Complex for Remote Investigations of the Ozonosphere.” Atmospheric and Oceanic Optics 13 (1): 84–88. https://ao.iao.ru/en/content/text?vol=13&issue=01&num=11.
  • Zuev, V. V., V. D. Burlakov, and A. V. El’nikov. 1998. “Ten Years (1986–1995) of Lidar Observations of Temporal and Vertical Structure of Stratospheric Aerosols Over Siberia.” Journal of Aerosol Science 29 (10): 1179–1187. https://doi.org/10.1016/S0021-8502(98)00025-1.
  • Zuev, V. V., V. D. Burlakov, A. V. El’nikov, A. P. Ivanov, A. P. Chaikovskii, and V. N. Shcherbakov. 2001. “Processes of Long-Term Relaxation of Stratospheric Aerosol Layer in Northern Hemisphere Midlatitudes After a Powerful Volcanic Eruption.” Atmospheric Environment 35 (30): 5059–5066. https://doi.org/10.1016/S1352-2310(01)00327-2.
  • Zuev, V. V., V. D. Burlakov, A. V. Nevzorov, V. L. Pravdin, E. S. Savelieva, and V. V. Gerasimov. 2017. “30-Year Lidar Observations of the Stratospheric Aerosol Layer State Over Tomsk (Western Siberia, Russia).” Atmospheric Chemistry & Physics 17 (4): 3067–3081. https://doi.org/10.5194/acp-17-3067-2017.
  • Zuev, V. V., V. V. Gerasimov, A. V. Nevzorov, and E. S. Savelieva. 2019. “Lidar Observations of Pyrocumulonimbus Smoke Plumes in the UTLS Over Tomsk (Western Siberia, Russia) from 2000 to 2017.” Atmospheric Chemistry & Physics 19 (5): 3341–3356. https://doi.org/10.5194/acp-19-3341-2019.
  • Zuev, V. V., and E. Savelieva. 2023. “Stratospheric Polar Vortex Dynamics According to the Vortex Delineation Method.” Journal of Earth System Science 132 (1): 39. https://doi.org/10.1007/s12040-023-02060-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.