1,675
Views
67
CrossRef citations to date
0
Altmetric
Original Articles

A State-of-the-Art Review of Car-Following Models with Particular Considerations of Heavy Vehicles

, &
Pages 82-105 | Received 21 Aug 2014, Accepted 08 Dec 2014, Published online: 19 Jan 2015

References

  • Aghabayk, K., Forouzideh, N., & Young, W. (2013). Exploring a local linear model tree approach to car-following. Computer-Aided Civil and Infrastructure Engineering, 28(8), 581–593. doi: 10.1111/mice.12011
  • Aghabayk, K., Sarvi, M., Forouzideh, N., & Young, W. (2013). Modelling heavy vehicle car-following behaviour in congested traffic condition. Journal of Advanced Transportation. doi:10.1002/atr.1242
  • Aghabayk, K., Sarvi, M., & Young, W. (2012). Understanding the dynamics of heavy vehicle interactions in car-following. Journal of Transportation Engineering, 138(12), 1468–1475. doi: 10.1061/(ASCE)TE.1943-5436.0000463
  • Aghabayk, K., Sarvi, M., & Young, W. (2014). Attribute selection for modelling driver's car-following behaviour in heterogeneous congested traffic conditions. Transportmetrica A: Transport Science, 10(5), 457–468. doi: 10.1080/23249935.2013.787558
  • Aron, M. (1988). Car following in an urban network: Simulation and experiments. Proceedings of Seminar D, 16th PTRC meeting, Bath, Somerset, England, UK, pp. 27–39.
  • Bando, M., Hasebe, K., Nakayama, A., Shibata, A., & Sugiyama, Y. (1995). Dynamical model of traffic congestion and numerical simulation. Physical Review E, 51(2), 1035–1042. doi: 10.1103/PhysRevE.51.1035
  • Bekey, G. A., Burnham, G. O., & Seo, J. (1977). Control theoretic models of human drivers in car following. Human Factors, 19(4), 399–413.
  • Brackstone, M., & McDonald, M. (1999). Car-following: A historical review. Transportation Research Part F, 2(4), 181–196. doi: 10.1016/S1369-8478(00)00005-X
  • Broqua, F., Lerner, G., Mauro, V., & Morello, E. (1991). Cooperative driving: Basic concepts and a first assessment of intelligent cruise control strategies. Proceedings of the DRIVE conference, Brussels, Belgium, pp. 908–929.
  • BTRE. (2003). Urban pollutant emissions from motor vehicles: Australian trends to 2020. Bureau of Transport and Regional Economics, Department of Transport and Regional services, Report for Environment Australia.
  • Bullen, A. G. R. (1982). Development of compact micro-simulation for analysing freeway operations and design. Transportation Research Record: Journal of Transportation Research Board, 841, 15–18.
  • Burnham, G. O., & Bekey, G. A. (1976). A heuristic finite state model of the human driver in a car following situation. IEEE Transactions on Systems, Man and Cybernetics SMC, 6(8), 554–562. doi: 10.1109/TSMC.1976.4309550
  • Ceder, A., & May, Jr., A. D. (1976). Further evaluation of single and two regime traffic flow models. Transportation Research Record: Journal of Transportation Research Board, 567, 1–30.
  • Chakroborty, P., & Kikuchi, S. (1999). Evaluation of the General Motors based car-following models and a proposed fuzzy inference model. Transportation Research Part C, 7(4), 209–235. doi: 10.1016/S0968-090X(99)00020-0
  • Chakroborty, P., & Kikuchi, S. (2003). Calibrating the membership functions of the fuzzy inference system: Instantiated by car-following data. Transportation Research Part C, 11(2), 91–119. doi: 10.1016/S0968-090X(02)00022-0
  • Champion, A., Espie, S., & Auberlet, J. M. (2001). Behavioural road traffic simulation with ARCHISIM. Proceedings of the summer computer simulation conference, Orlando.
  • Champion, A., Zhang, M. Y., Auberlet, J. M., & Espie, S. (2002). Behavioural simulation: Towards high-density network traffic studies. Proceedings of the international conference on traffic and transportation studies, Guilin, China.
  • Chandler, R. E., Herman, R., & Montroll, E. W. (1958). Traffic dynamics: Studies in car following. Operations Research, 6(2), 165–184. doi: 10.1287/opre.6.2.165
  • Cohen, S. L. (2002). Application of car-following systems to queue discharge problem at signalized intersections. Transportation Research Record: Journal of the Transportation Research Board, 1802(1), 205–213. doi: 10.3141/1802-23
  • Das, S., Bowles, B. A., Houghland, C. R., Hunn, S. J., & Zhang, Y. (1999). A fuzzy logic model of freeway driver behaviour. Proceedings of the international ICSC congress on computational intelligence methods and applications, New York.
  • Dougherty, M. (1995). A review of neural networks applied to transport. Transportation Research Part C, 3(4), 247–260. doi: 10.1016/0968-090X(95)00009-8
  • Dougherty, M. S., Kirby, H. R., & Boyle, R. D. (1993). The use of neural networks to recognise and predict traffic congestion. Traffic Engineering and Control, 34(6), 311–314.
  • Edie, L. C. (1960). Car following and steady state theory for non-congested traffic. Operations Research, 9, 66–76. doi: 10.1287/opre.9.1.66
  • El Hadouaj, S., Espie, S., & Drogoul, A. (2000). To combine reactivity and anticipation: The case of conflicts resolution in a simulated road traffic. Boston, MA: The Second International Workshop on Multi-Agent Based Simulation.
  • Espie, S., Saad, F., Schnetzler, B., Bourlier, F., & Djemame, N. (1994). Microscopic traffic simulation and driver behaviour modelling: The ARCHISIM project. The Strategic Highway Research Program and Traffic Safety on Two Continents, Lille, France.
  • Evans, L., & Rothery, R. (1973). Experimental measurement of perceptual thresholds in car following. Highway Research Record, 64, 13–29.
  • Ferrari, P. (1989). The effect of driver behavior on motorway reliability. Transportation Research Part B, 23(2), 139–150. doi: 10.1016/0191-2615(89)90037-4
  • FHWA. (2005). ‘NGSIM dataset’. Retrieved from http://www.ngsim.fhwa.dot.gov/ accessed in 2009.
  • Fix, E., & Armstrong, H. G. (1990). Modelling human performance with neural networks. Proceedings of the international joint conference on neural networks, San Diego, CA, pp. 247–252.
  • Gao, Q., Hu, S., & Dong, C. (2008). The modeling and simulation of the car-following behavior based on fuzzy inference. Proceedings of the international workshop on modelling, simulation and optimization, WMSO, Hong Kong, pp. 322–325.
  • Gazis, D. C., Herman, R., & Potts, R. B. (1959). Car following theory of steady state traffic flow. Operations Research, 7(4), 499–505. doi: 10.1287/opre.7.4.499
  • Gipps, P. G. (1981). A behavioural car following model for computer simulation. Transportation Research B, 15(2), 105–111. doi: 10.1016/0191-2615(81)90037-0
  • Gonzalez-Rojo, S., Slama, J. G., Pereira, A. L., & Mora-Camino, F. (2000). Fuzzy parameters estimation for car-following modelling. Proceedings of the 14th European simulation multi-conference on simulation and modelling: enablers for a better quality of life, Ghent, Belgium.
  • Gonzalez-Rojo, S., Slama, J. G., Pereira, A. L., & Mora-Camino, F. (2002). A fuzzy logic approach for car-following modelling. Systems Analysis Modelling Simulation, 42(5), 735–755. doi: 10.1080/716067182
  • Hanken, A., & Rockwell, T. H. (1967). A model of car following derived empirically by piece-wise regression analysis. Proceedings of the 3rd international symposium on the theory of traffic flow, New York, Elsevier, pp. 40–41.
  • Hatipkarasulu, Y., & Wolshon, B. (2003). Variable response time lag module for car-following models: Development and structuring with fuzzy set theory. Transportation Research Record: Journal of the Transportation Research Board, 1843(1), 50–60. doi: 10.3141/1843-07
  • Helly, W. (1959). Simulation of bottlenecks in single lane traffic flow. Proceedings of the symposium on theory of traffic flow, Research Laboratories, General Motors, New York, pp. 207–238.
  • Henn, V. (1995). Utilisation de la Logique Floue pour la Modelisation Microscopique du Trafic Routier, La Revue du Logique Floue.
  • Herman, R., & Potts, R. B. (1959). Single lane traffic theory and experiment. Proceedings of the symposium on theory of traffic flow, Research Labs, General Motors, New York, pp. 147–157.
  • Heyes, M. P., & Ashworth, R. (1972). Further research on car following models. Transportation Research, 6(3), 287–291. doi: 10.1016/0041-1647(72)90020-2
  • Hoefs, D. H. (1972). Entwicklung einer Messmethode uber den Bewegungsablauf des Kolonnenverrkehrs. Germany: Universitat (TH) Karlsruhe.
  • Hongfei, J., Zhicai, J., & Anning, N. (2003). Develop a car-following model using data collected by ‘five-wheel system’. Proceedings of the IEEE intelligent transportation system, Vol. 1, China, pp. 346–351.
  • Kesting, A., & Treiber, M. (2008). How reaction time, update time and adaptation time influence the stability of traffic flow. Computer-Aided Civil and Infrastructure Engineering, 23(2), 125–137. doi: 10.1111/j.1467-8667.2007.00529.x
  • Kesting, A., Treiber, M., & Helbing, D. (2010). Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity. Philosophical Transactions of the Royal Society A, 368(1928), 4585–4605. doi: 10.1098/rsta.2010.0084
  • Kikuchi, C., & Chakroborty, P. (1992). Car following model based on a fuzzy inference system. Transportation Research Record: Journal of the Transportation Research Board, 1365, 82–91.
  • Kometani, E., & Sasaki, T. (1958). On the stability of traffic flow. Journal of Operations Research Japan, 2, 11–26.
  • Kometani, E., & Sasaki, T. (1959). Dynamic behaviour of traffic with a nonlinear spacing-speed relationship. Proceedings of the symposium on theory of traffic flow, Research Laboratories, General Motors, New York, pp. 105–119.
  • Krauss, S., Nagel, K., & Wagner, P. (1999). The mechanism of flow breakdown in traffic flow models. Proceedings of the 14th international symposium of transportation and traffic theory, abbreviated presentations, Israel.
  • Lee, D. N. (1976). A theory of visual control of braking based on information about time to collision. Perception, 5(4), 437–459. doi: 10.1068/p050437
  • Lenz, H., Wanger, C. K., & Sollacher, R. (1999). Multi-anticipative car-following model. The European Physical Journal B, 7(2), 331–335. doi: 10.1007/s100510050618
  • Leplat, J., & Hoc, J. M. (1981). Subsequent verbalization in the study of cognitive processes. Ergonomics, 24(10), 743–755. doi: 10.1080/00140138108924896
  • Li, S. (2003). Simulation of car-following decision using fuzzy neural network system. Proceedings of the IEEE international conference on intelligent transportation system, Vol. 1, pp. 140–145.
  • Ma, X. (2004). Toward an integrated car-following and lane-changing model based on neural-fuzzy approach. Helsinki summer workshop, Centre for Traffic Research, Stockholm.
  • Manstetten, D., Krautter, W., & Schwab, T. (1997). Traffic simulation supporting urban control system development. Proceedings of the fourth world conference of intelligent transportation system, Berlin, Germany, pp. 1–8.
  • May, Jr., A. D., & Keller, H. E. M. (1967). Non integer car following models. Highway Research Record, 199, 19–32.
  • McDonald, M., Brackstone, M., & Jeffery, D. (1994). Simulation of lane usage characteristics on 3 lane motorways. Proceedings of the 27th ISATA conference, Aachen, Germany.
  • McDonald, M., Wu, J., & Brackstone, M. (1997). Development of a fuzzy logic based microscopic motorway simulation mode. Proceedings of the ITSC97 conference, Boston, USA.
  • Michaels, R. M. (1963). Perceptual factors in car following. Proceedings of the second international symposium on the theory of road traffic flow, Paris, pp. 44–59.
  • Michaels, R. M., & Cozan, L. W. (1963). Perceptual and field factors causing lateral displacements. Public Roads, 32, 233–240.
  • Nagel, K., Wanger, P., & Woesler, R. (2003). Still flowing: Approaches to traffic flow and traffic jam modelling. Operational Research, 51(5), 681–710. doi: 10.1287/opre.51.5.681.16755
  • NCHRP. (2003). Strategies for managing increasing truck. National Cooperative Highway Research Program, Synthesis 314.
  • Nelles, O. (2001). Nonlinear system identification: From classical approaches to neural networks and fuzzy models. Berlin: Springer-Verlag.
  • Newell, G. F. (1963). Instability in dense highway traffic: A review. London: Second Symposium; Theory Traffic Flow, OECD, 73–83.
  • Ossen, S., & Hoogendoorn, S. P. (2011). Heterogeneity in car-following behavior: Theory and empirics. Transport Research Part C, 19(2), 182–195. doi: 10.1016/j.trc.2010.05.006
  • Ozaki, H. (1993). Reaction and anticipation in the car following behaviour. Proceedings of the 12th international symposium on traffic and transportation theory, California, pp. 349–366.
  • Panwai, S., & Dia, H. (2007). Neural agent car-following models. IEEE Transactions on Intelligent Transportation Systems, 8(1), 60–70. doi: 10.1109/TITS.2006.884616
  • Peeta, S., Zhang, P., & Zhou, W. (2005). Behaviour-based analysis of freeway car-truck interactions and related mitigation strategies. Transportation Research Part B, 39(5), 417–451. doi: 10.1016/j.trb.2004.06.002
  • Pipes, L. A. (1953). An operational analysis of traffic dynamics. Journal of Applied Physics, 24(3), 274–281. doi: 10.1063/1.1721265
  • Pomerleau, D. A. (1989). ALVINN: An autonomous land vehicle in a neural network. In D. S. Touretzky (Ed.), Advances in Neural Information Processing Systems (Vol. 1, pp. 305–313). San Mateo, CA: Morgan Kaufmann.
  • Pomerleau, D. A. (1992). Progress in neural network-based vision for autonomous robot driving. Proceedings of the intelligent vehicle symposium, Detroit, MI, pp. 391–396.
  • Rakha, H., & Wang, W. (2009). Procedure for calibrating Gipps car-following model. Transportation Research Record: Journal of the Transportation Research Board, 2124(1), 113–124. doi: 10.3141/2124-11
  • Ramsay, E. D., & Bunker, J. M. (2007). Management of competing demands on urban freight corridors. Road & Transport Research, 16(3), 3–15.
  • Reiter, U. (1994). Empirical studies as basis for traffic flow models. Proceedings of the second international symposium on highway capacity, Vol. 2, pp. 493–502.
  • Rekersbrink, A. (1995). Mikroskopische verkehrssimulation mit hilfe der fuzzy logik. Strass enverkehrstechnik, 2(95), 68–74.
  • Rockwell, T. H., Ernst, R. L., & Hanken, A. (1968). A sensitivity analysis of empirically derived car following models. Transportation Research, 2, 363–373. doi: 10.1016/0041-1647(68)90102-0
  • Saad, F. (1992). Conduite en file: Représentation des situations critiques selon l'expérience des conducteurs, Rapport final de convention INRETS-ISIS.
  • Sarvi, M. (2011). Heavy commercial vehicles following behaviour and interactions with different vehicle classes. Journal of Advanced Transportation, doi:10.1002/atr.182
  • Sarvi, M., & Kuwahara, M. (2008). Using ITS to improve the capacity of freeway merging sections by transferring freight vehicles. IEEE Transactions on Intelligent Transportation Systems, 9(4), 580–588. doi: 10.1109/TITS.2008.2006812
  • Shiwakoti, N., Sarvi, M., Rose, G., & Burd, M. (2011). Animal dynamics based approach for modeling pedestrian crowd egress under panic conditions. Transportation Research Part B: Methodological, 45(9), 1433–1449. doi: 10.1016/j.trb.2011.05.016
  • Taylor, J. G. (1994). An international perspective on neural networks. Proceedings of the conference neural networks, neuro-fuzzy and other learning systems for engineering applications and research, EPSRC/DRAL, pp. 73–87.
  • Treiber, M., Hennecke, A., & Helbing, D. (2000). Congested traffic states in empirical observations and microscopic simulations. Physical Review E, 62(2), 1805–1824. doi: 10.1103/PhysRevE.62.1805
  • Treiterer, J., & Myers, J. A. (1974). The hysteresis phenomenon in traffic flow. Proceedings of the sixth international symposium on transportation and traffic theory, Sydney, pp. 13–38.
  • VISSIM. (2012). VISSIM 5.40–01, user manual, Planung Transport Verkehr AG, Karlsruhe, Germany.
  • Wiedemann, R. (1974). Simulation des Strassenverkehrsflusses. Technical report, Institut fur Verkehrswesen, Universitat Karlsruhe, Karlsruhe, Germany, In German.
  • Wiedemann, R., & Reiter, U. (1992). Microscopic traffic simulation: The simulation system MISSION. CEC Project ICARUS (V1052), Final Report.
  • Wiedemann, R., & Schwerdtfeger, T. (1987). Makroskopisches simulations-modell fur schnellstrassennetze mit berucksichtigung von einzelfahrzeugen. Technical report, Bundesministerium fur Verkehr, Abt. Strassenbau, Bonn, Germany, In German.
  • Won, J., Lee, S., Lee, S., & Kim, T. (2007). Establishment of car following theory based on fuzzy-based sensitivity parameters. Advances in multimedia modelling. Proceedings of 13th international multimedia modeling conference, Singapore.
  • Wright, S. J. (2006). Review of urban congestion trends, impacts and solutions. Traffic management systems for Australian urban freeways, Prepared by ARRB consulting for Council of Australian Governments, Canberra.
  • Wu, J., Brackstone, M., & McDonald, M. (2003). The validation of a microscopic simulation model: A methodological case study. Transportation Research Part C, 11(6), 463–479. doi: 10.1016/j.trc.2003.05.001
  • Xing, J. (1995). A parameter identification of a car following model. Proceedings of the second world congress on ATT, Yokohama, November, pp. 1739–1745.
  • Young, W., Sobhani, A., Lenne, M., & Sarvi, M. (2014). Simulation of Safety: A review of the state of the art in road safety simulation modelling. Accident Analysis and Prevention, 66, 89–103. doi: 10.1016/j.aap.2014.01.008
  • Yousif, S., & Al-Obaedi, J. (2011). Close following behavior: Testing visual angle car following models using various sets of data. Transportation Research Part F: Traffic Psychology and Behaviour, 14(2), 96–110. doi: 10.1016/j.trf.2010.11.001
  • Yuelong, S., Zheng, W., Sihan, C., Danya, Y., Yi, Z., Li, L. … Zhiheng, L. (2008). Departure headways of mixed traffic flow at signalized intersections: Distributions, simulations and validations. Transportation research board 87th annual meeting, no. 08-0479 (Compendium of Papers DVD).
  • Zhang, J., Wang, H., & Li, P. (2006). Bicycle flow modeling and simulation based on cellular automaton. Journal of Highway and Transportation Research and Development, 23(1), 125–129.
  • Zheng, P., & McDonald, M. (2005). Application of fuzzy systems in the car-following behaviour analysis. Proceedings of the 2nd international conference on fuzzy systems and knowledge discovery, Vol. 3613, Changsha, China, pp. 782–791.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.