1,419
Views
56
CrossRef citations to date
0
Altmetric
Articles

Genetics of traffic assignment models for strategic transport planning

, , , , &
Pages 56-78 | Received 01 Jan 2016, Accepted 26 Jun 2016, Published online: 14 Jul 2016

References

  • Akamatsu, T., Makino, Y., & Takahashi, E. (1998). Semi-dynamic traffic assignment models with queue evolution and elastic OD demand (in Japanese). Infrastructure Planning Review, 15, 535–545. doi: 10.2208/journalip.15.535
  • Akçelik, R. (1991). Travel time functions for transport planning purposes: Davidson’s function, its time-dependent form and an alternative travel time function. Australian Road Research, 21(3), 49–59.
  • Beckmann, M. J., McGuire, C. B., & Winsten, C. B. (1956). Studies in economics of transportation. New Haven, CT: Yale University Press.
  • Bell, M. G. H. (1995). Stochastic user equilibrium in networks with queues. Transportation Research Part B, 29(2), 115–112. doi: 10.1016/0191-2615(94)00030-4
  • Bifulco, G., & Crisalli, U. (1998). Stochastic user equilibrium and link capacity constraints: Formulation and theoretical evidences. Paper presented at the proceedings of the European transport conference, Loughborough, UK, pp. 85–96.
  • Bliemer, M. C. J. (2007). Dynamic queuing and spillback in an analytical multiclass dynamic network loading model. Transportation Research Record: Journal of the Transportation Research Board, 2029, 14–21. doi: 10.3141/2029-02
  • Bliemer, M. C. J., & Bovy, P. H. L. (2003). Quasi-variational inequality formulation of the multiclass dynamic traffic assignment problem. Transportation Research Part B, 37, 501–519. doi: 10.1016/S0191-2615(02)00025-5
  • Bliemer, M. C. J., Raadsen, M. P. H., de Romph, E., & Smits, E. S. (2013). Requirements for traffic assignment models for strategic transport planning: A critical assessment. Paper presented at the proceedings of the Australasian Transport Research Forum, Brisbane, Australia.
  • Bliemer, M. C. J., Raadsen, M. P. H., Smits, E. S., Zhou, B., & Bell, M. G. H. (2014). Quasi-dynamic static traffic assignment with residual point queues incorporating a first order node model. Transportation Research Part B, 68, 363–384. doi: 10.1016/j.trb.2014.07.001
  • Bovy, P. H. L. (1990). Traffic assignment in uncongested networks (in Dutch) (PhD thesis). Delft University of Technology, the Netherlands.
  • Branston, D. (1976). Link congestion functions: A review. Transportation Research, 10, 223–236. doi: 10.1016/0041-1647(76)90055-1
  • Buisson, C., Lebacque, J. P., & Lesort, J. B. (1999). Travel time computation for dynamic assignment modelling. In M. G. H. Bell (Ed.), Transportation networks: Recent methodological advances, selected proceedings of the 4th EURO Transportation Meeting. Newcastle, pp. 303–317.
  • Bureau of Public Roads. (1964). Traffic assignment manual. U.S. Dept. of Commerce. Washington, DC: Urban Planning Division.
  • Cascetta, E. (2009). Transportation systems analysis: Models and applications (2nd ed.). New York, NY: Springer.
  • Chabini, I. (2001). Analytical dynamic network loading problem formulation, solution algorithms, and computer implementations. Transportation Research Record, Vol. 1771, Washington, DC: Transportation Research Board, pp. 191–200.
  • Chen, H. K., & Hsueh, C. F. (1998). A model and an algorithm for the dynamic user optimal route choice problem. Transportation Research Part B. Methodological, 32(3), 219–234. doi: 10.1016/S0191-2615(97)00026-X
  • Daganzo, C. F. (1977). On the traffic assignment problem with flow dependent costs – II. Transportation Research, 11, 439–441. doi: 10.1016/0041-1647(77)90010-7
  • Daganzo, C. F. (1994). The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory. Transportation Research Part B, 28(4), 269–287. doi: 10.1016/0191-2615(94)90002-7
  • Daganzo, C. F. (1995a). The cell transmission model, Part II: Network traffic. Transportation Research Part B, 29(2), 79–93. doi: 10.1016/0191-2615(94)00022-R
  • Daganzo, C. F. (1995b). Requiem for second-order fluid approximations of traffic flow. Transportation Research Part B, 29(4), 277–286. doi: 10.1016/0191-2615(95)00007-Z
  • Daganzo, C. F., & Sheffi, Y. (1977). On stochastic models of traffic assignment. Transportation Science, 11, 253–274. doi: 10.1287/trsc.11.3.253
  • Davidson, K. B. (1966). A flow travel-time relationship for use in transport planning. Proceedings of the 3rd Australian Road Research Board Conference, 8(1), 32–35.
  • Davidson, P., Thomas, A., & Teye-Ali, C. (2011). Clocktime assignment: A new mesoscopic junction delay highway assignment approach to continuously assign traffic over the whole day. Paper presented at the European transport conference proceedings.
  • Di, X., Liu, H. X., Pang, J. S., & Ban, X. (2013). Boundedly rational user equilibria (BRUE): Mathematical formulation and solution sets. Transportation Research Part B, 57, 300–313. doi: 10.1016/j.trb.2013.06.008
  • Fisk, C. (1980). Some developments in equilibrium traffic assignment. Transportation Research Part B: Methodological, 14(3), 243–255. doi: 10.1016/0191-2615(80)90004-1
  • Flötteröd, G., & Rohde, J. (2011). Operational macroscopic modeling of complex urban road intersections. Transportation Research Part B, 45(6), 903–922. doi: 10.1016/j.trb.2011.04.001
  • Friesz, T. L., Han, K., Neto, P. A., Meimand, A., & Yao, T. (2013). Dynamic user equilibrium based on a hydrodynamic model. Transportation Research Part B, 47, 102–126. doi: 10.1016/j.trb.2012.10.001
  • Fujita, M., Matsui, M., & Mizokami, S. (1988). Modelling of the time-of-day traffic assignment over a traffic network (in Japanese). Proceedings of Japan Society of Civil Engineers, 389/IV-11, 111–119.
  • Fujita, M., Yamamoto, K., & Matsui, M. (1989). Modelling of the time-of-day assignment over a congested network (in Japanese). Proceedings of Japan Society of Civil Engineers, 407/IV-11, 129–138.
  • Gentile, G. (2010). The general link transmission model for dynamic network loading and a comparison with the DUE algorithm. In L. G. H. Immers, C. M. J. Tampère, & F. Viti (Eds.), New developments in transport planning: Advances in dynamic traffic assignment. Transport economics, management and policy series (pp. 153–178). Northampton, MA: Edward Elgar Publishing.
  • Gibb, J. (2011). Model of traffic flow capacity constraint through nodes for dynamic network loading with queue spillback. Transportation Research Record: Journal of the Transportation Research Board, 2263, 113–122. doi: 10.3141/2263-13
  • Greenshields, B. D. (1935). A study of traffic capacity. Highway Research Board Proceedings, 14, 448–477.
  • Han, K., Szeto, W. Y., & Friesz, T. L. (2015). Formulation, existence, and computation of bounded rationality dynamic user equilibrium with fixed or endogenous user tolerance. Transportation Research Part B, 79, 16–49. doi: 10.1016/j.trb.2015.05.002
  • Irwin, N. A., Dodd, N., & Von Cube, H. G. (1961). Capacity restraint in assignment programs. Highway Research Bulletin, 297, 109–127.
  • Janson, B. N. (1991). Dynamic traffic assignment for urban road networks. Transportation Research Part B, 25(2/3), 143–161. doi: 10.1016/0191-2615(91)90020-J
  • Jin, W.-L. (2012a). The traffic statics problem in a road network. Transportation Research Part B, 46, 1360–1373. doi: 10.1016/j.trb.2012.06.003
  • Jin, W.-L. (2012b). A kinematic wave theory of multi-commodity network traffic flow. Transportation Research Part B, 46, 1000–1022. doi: 10.1016/j.trb.2012.02.009
  • Jin, W.-L., & Zhang, H. M. (2003). On the distribution schemes for determining flows through a merge. Transportation Research Part B, 37(6), 521–540. doi: 10.1016/S0191-2615(02)00026-7
  • Jin, W. L., & Zhang, H. M. (2004). Multicommodity kinematic wave simulation model for network traffic flow. Transportation Research Record: Journal of the Transportation Research Board, 1883, 59–67. doi: 10.3141/1883-07
  • Kitthamkesorn, S., & Chen, A. (2013). A path-size weibit stochastic user equilibrium problem. Transportation Research Part B, 57, 378–397. doi: 10.1016/j.trb.2013.06.001
  • Lam, W., & Zhang, Y. (2000). Capacity-constrained traffic assignment in networks with residual queues. Journal of Transportation Engineering, 26(2), 121–128. doi: 10.1061/(ASCE)0733-947X(2000)126:2(121)
  • Lebacque, J. P., & Khoshyaran, M. M. (2005). First-order macroscopic traffic flow models: Intersection modeling, network modeling. Proceedings of the 16th international symposium on Transportation and Traffic Theory (ISTTT), College Park, MD, pp. 365–386.
  • Li, J., Fujiwara, O., & Kawakami, S. (2000). A reactive dynamic user equilibrium model in network with queues. Transportation Research Part B, 34, 605–624. doi: 10.1016/S0191-2615(99)00040-5
  • Lighthill, M. J., & Whitham, G. B. (1955). On kinematic waves. II. A theory of traffic flow on long crowded roads. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 229, 317–345. doi: 10.1098/rspa.1955.0089
  • Miller, S. D., Payne, H. J., & Thompson, W. A. (1975). An algorithm for traffic assignment on capacity transportation networks with queues. Paper presented at the Johns Hopkins conference on information sciences and systems, Baltimore, MD, April 2–4.
  • Miyagi, T., & Makimura, K. (1991). A study on semi-dynamic traffic assignment method (in Japanese). Traffic Engineering, 26, 17–28.
  • Nakayama, S. (2009). A semi-dynamic assignment model considering space-time movement of traffic congestion (in Japanese). JSCE Journal of Infrastructure Planning & Management, 64D, 340–353.
  • Nakayama, S., & Connors, R. (2014). A quasi-dynamic assignment model that guarantees unique network equilibrium. Transportmetrica A, 10(7), 669–692. doi: 10.1080/18128602.2012.751685
  • Newell, G. F. (1993). A simplified theory of kinematic waves in highway traffic, Part I: General theory. Transportation Research Part B, 27, 281–313. doi: 10.1016/0191-2615(93)90038-C
  • Ni, D., & Leonard, II J. D. (2005). A simplified kinematic wave model at a merge bottleneck. Applied Mathematical Modelling, 29, 1054–1072. doi: 10.1016/j.apm.2005.02.008
  • Payne, H. J., & Thompson, W. A. (1975). Traffic assignment on transportation networks with capacity constraints and queueing. Paper presented at the 47th national ORSA meeting/TIMS 1975 North American meeting, Chicago, IL, April 30–May 2.
  • Ran, B., & Boyce, D. (1996). Modeling dynamic transportation networks: An intelligent transportation system oriented approach. Heidelberg: Springer-Verlag.
  • Richards, P. I. (1956). Shock waves on the highway. Operations Research, 4, 42–51. doi: 10.1287/opre.4.1.42
  • Smith, M. J. (1987). Traffic control and traffic assignment in a signal-controlled network with queueing. In N. H. Gartner & M. Wilson (Eds.), Proceedings of the tenth international symposium on transportation and traffic theory (pp. 61–68). Cambridge, MA: Elsevier.
  • Smith, M. J. (2013). A link-based elastic demand equilibrium model with capacity constraints and queueing delays. Transportation Research Part C: Emerging Technologies, 29, 131–147. doi: 10.1016/j.trc.2012.04.011
  • Smith, M. J., Huang, W., & Viti, F. (2013). Equilibrium in capacitated network models with queueing delays, queue-storage, blocking back and control. Procedia – Social and Behavioral Siences, 80, 860–879. doi: 10.1016/j.sbspro.2013.05.047
  • Smits, E. S., Bliemer, M. C. J., Pel, A. J., & Van Arem, B. (2015). A family of macroscopic node models. Transportation Research Part B, 74, 20–39. doi: 10.1016/j.trb.2015.01.002
  • Spiess, H. (1990). Technical note – canonical volume-delay functions. Transportation Science, 42(2), 153–158. doi: 10.1287/trsc.24.2.153
  • Tampère, C. M. J., Corthout, R., Cattrysse, D., & Immers, L. H. (2011). A generic class of first order node models for dynamic macroscopic simulation of traffic flows. Transportation Research Part B, 45, 289–309. doi: 10.1016/j.trb.2010.06.004
  • Taylor, M. A. P. (1984). A note on using Davidson’s function in equilibrium assignment. Transportation Research Part B, 18(3), 181–199. doi: 10.1016/0191-2615(84)90031-6
  • Van Vliet, D. (1982). SATURN: A modern assignment model. Traffic Engineering and Control, 23, 575–581.
  • Wardrop, J. G. (1952). Some theoretical aspects of road traffic research. Proceedings of the Institute of Civil Engineers, Part II, 325–378. doi: 10.1680/ipeds.1952.11259
  • Yperman, I. (2007). The link transmission model for dynamic network loading (PhD thesis). Katholieke Universiteit Leuven, Belgium.
  • Yperman, I., Logghe, S., & Immers, L. (2005). The link transmission model: An efficient implementation of the kinematic wave theory in traffic networks. In Advanced OR and AI Methods in transportation, proceedings of the 10th EWGT meeting and the 16th mini-EURO conference, Publishing House of Poznan University of Technology, Poznan, Poland, 122–127.
  • Zhou, Z., Chen, A., & Bekhor, S. (2012). C-logit stochastic user equilibrium model: Formulations and solution algorithm. Transportmetrica, 8(1), 17–41. doi: 10.1080/18128600903489629

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.