2,001
Views
82
CrossRef citations to date
0
Altmetric
Articles

Social force models for pedestrian traffic – state of the art

, , &
Pages 625-653 | Received 26 Apr 2017, Accepted 15 Oct 2017, Published online: 05 Nov 2017

References

  • Asano, M., Iryo, T., & Kuwahara, M. (2010). Microscopic pedestrian simulation model combined with a tactical model for route choice behaviour. Transportation Research Part C: Emerging Technologies, 18, 842–855. doi: 10.1016/j.trc.2010.01.005
  • Ashford, N., O’Leary, M., & McGinity, P. (1976). Stochastic modelling of passenger and baggage flows through an airport terminal. Traffic Engineering & Control, 17, 207–210.
  • Bellomo, N., Piccoli, B., & Tosin, A. (2012). Modeling crowd dynamics from a complex system viewpoint. Mathematical Models and Methods in Applied Sciences, 22, 1230004. doi: 10.1142/S0218202512300049
  • Blue, V., & Adler, J. (1998). Emergent fundamental pedestrian flows from cellular automata microsimulation. Transportation Research Record: Journal of the Transportation Research Board, 1644, 29–36. doi: 10.3141/1644-04
  • Camazine, S. (2003). Self-organization in biological systems. Princeton: Princeton University Press.
  • Caramuta, C., Collodel, G., Giacomini, C., Gruden, C., Longo, G., & Piccolotto, P. (2017). Survey of detection techniques, mathematical models and simulation software in pedestrian dynamics. Transportation Research Procedia, 25, 551–567. doi: 10.1016/j.trpro.2017.05.438
  • Chen, X., Li, H., Miao, J., Jiang, S., & Jiang, X. (2017). A multiagent-based model for pedestrian simulation in subway stations. Simulation Modelling Practice and Theory, 71, 134–148. doi: 10.1016/j.simpat.2016.12.001
  • Daamen, W. (2004). Modelling passenger flows in public transport facilities. Delft: DUP Science Delft.
  • Daamen, W., & Hoogendoorn, S. (2012). Calibration of pedestrian simulation model for emergency doors by pedestrian type. Transportation Research Record: Journal of the Transportation Research Board, 2316, 69–75. doi: 10.3141/2316-08
  • Duives, D. C., Daamen, W., & Hoogendoorn, S. P. (2013). State-of-the-art crowd motion simulation models. Transportation Research Part C: Emerging Technologies, 37, 193–209. doi: 10.1016/j.trc.2013.02.005
  • Fang, Z.-M., Song, W.-G., Liu, X., Lv, W., Ma, J., & Xiao, X. (2012). A continuous distance model (CDM) for the single-file pedestrian movement considering step frequency and length. Physica A: Statistical Mechanics and its Applications, 391, 307–316. doi: 10.1016/j.physa.2011.08.009
  • Franěk, M. (2013). Environmental factors influencing pedestrian walking speed. Perceptual and Motor Skills, 116, 992–1019. doi: 10.2466/06.50.PMS.116.3.992-1019
  • Fruin, J. J. (1971). Pedestrian planning and design. New York, NY: Metropolitan Association of Urban and Environment Planners.
  • Fu, L., Song, W., & Lo, S. (2016). A fuzzy-theory-based behavioral model for studying pedestrian evacuation from a single-exit room. Physics Letters A, 380, 2619–2627. doi: 10.1016/j.physleta.2016.06.011
  • Garbrecht, D. (1973). Describing pedestrian and car trips by transition matrices. Traffic Quarterly, 27, 89–109.
  • Gipps, P. G., & Marksjö, B. (1985). A micro-simulation model for pedestrian flows. Mathematics and Computers in Simulation, 27, 95–105. doi: 10.1016/0378-4754(85)90027-8
  • Guo, R.-Y. (2014). Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck. Physica A: Statistical Mechanics and its Applications, 415, 428–439. doi: 10.1016/j.physa.2014.08.036
  • Guo, R.-Y., & Huang, H.-J. (2012). Formulation of pedestrian movement in microscopic models with continuous space representation. Transportation Research Part C: Emerging Technologies, 24, 50–61. doi: 10.1016/j.trc.2012.02.004
  • Helbing, D. (1991). A mathematical model for the behavior of pedestrians. Systems Research and Behavioral Science, 36, 298–310. doi: 10.1002/bs.3830360405
  • Helbing, D., Buzna, L., Johansson, A., & Werner, T. (2005). Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation Science, 39, 1–24. doi: 10.1287/trsc.1040.0108
  • Helbing, D., Farkas, I., & Vicsek, T. (2000a). Simulating dynamical features of escape panic. Nature, 407, 487–490. doi: 10.1038/35035023
  • Helbing, D., Farkas, I. J., & Vicsek, T. (2000b). Freezing by heating in a driven mesoscopic system. Physical Review Letters, 84, 1240. doi: 10.1103/PhysRevLett.84.1240
  • Helbing, D., & Johansson, A. (2011). Pedestrian, crowd and evacuation dynamics. New York: Springer.
  • Helbing, D., & Molnar, P. (1995). Social force model for pedestrian dynamics. Physical Review E, 51, 4282. doi: 10.1103/PhysRevE.51.4282
  • Heliövaara, S., Korhonen, T., Hostikka, S., & Ehtamo, H. (2012). Counterflow model for agent-based simulation of crowd dynamics. Building and Environment, 48, 89–100. doi: 10.1016/j.buildenv.2011.08.020
  • Henderson, L. F. (1974). On the fluid mechanics of human crowd motion. Transportation Research, 8, 509–515. doi: 10.1016/0041-1647(74)90027-6
  • Hoogendoorn, S., & Bovy, P. H. L. (2003). Simulation of pedestrian flows by optimal control and differential games. Optimal Control Applications and Methods, 24, 153–172. doi: 10.1002/oca.727
  • Hoogendoorn, S., & Daamen, W. (2006). Microscopic parameter identification of pedestrian models and implications for pedestrian flow modeling. Transportation Research Record: Journal of the Transportation Research Board, 1982, 57–64. doi: 10.1177/0361198106198200108
  • Hou, L., Liu, J.-G., Pan, X., & Wang, B.-H. (2014). A social force evacuation model with the leadership effect. Physica A: Statistical Mechanics and its Applications, 400, 93–99. doi: 10.1016/j.physa.2013.12.049
  • Jiang, Y.-Q., Chen, B.-K., Wang, B.-H., Wong, W.-F., & Cao, B.-Y. (2017). Extended social force model with a dynamic navigation field for bidirectional pedestrian flow. Frontiers of Physics, 12, 124502. doi: 10.1007/s11467-017-0689-3
  • Johansson, F., Duives, D., Daamen, W., & Hoogendoorn, S. (2014). The many roles of the relaxation time parameter in force based models of pedestrian dynamics. Transportation Research Procedia, 2, 300–308. doi: 10.1016/j.trpro.2014.09.057
  • Johansson, A., Helbing, D., & Shukla, P. K. (2007). Specification of the social force pedestrian model by evolutionary adjustment to video tracking data. Advances in Complex Systems, 10, 271–288. doi: 10.1142/S0219525907001355
  • Kuligowski, E. D., Peacock, R. D., & Hoskins, B. L. (2005). A review of building evacuation models. Gaithersburg, MD: US Department of Commerce, National Institute of Standards and Technology.
  • Lakoba, T. I., Kaup, D. J., & Finkelstein, N. M. (2005). Modifications of the Helbing-Molnar-Farkas-Vicsek social force model for pedestrian evolution. Simulation, 81, 339–352. doi: 10.1177/0037549705052772
  • Langston, P. A., Masling, R., & Asmar, B. N. (2006). Crowd dynamics discrete element multi-circle model. Safety Science, 44, 395–417. doi: 10.1016/j.ssci.2005.11.007
  • Lee, K. H., Choi, M. G., Hong, Q., & Lee, J. (2007). Group behavior from video: a data-driven approach to crowd simulation. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation (pp. 109–118). Eurographics Association.
  • Lee, J., Kim, T., Chung, J.-H., & Kim, J. (2016). Modeling lane formation in pedestrian counter flow and its effect on capacity. KSCE Journal of Civil Engineering, 20, 1099–1108. doi: 10.1007/s12205-016-0741-9
  • Li, S. (1982). A brief introduction to psychological statistical methods. Education and Scientific Research Exchange, 3, 009.
  • Li, M., Zhao, Y., He, L., Chen, W., & Xu, X. (2015). The parameter calibration and optimization of social force model for the real-life 2013 ya’an earthquake evacuation in China. Safety Science, 79, 243–253. doi: 10.1016/j.ssci.2015.06.018
  • Liu, S., Lo, S., Ma, J., & Wang, W. (2014). An agent-based microscopic pedestrian flow simulation model for pedestrian traffic problems. IEEE Transactions on Intelligent Transportation Systems, 15, 992–1001. doi: 10.1109/TITS.2013.2292526
  • Ma, Y., Lee, E. W. M., & Yuen, R. K. K. (2016). An artificial intelligence-based approach for simulating pedestrian movement. Ieee Transactions On Intelligent Transportation Systems, 17, 3159–3170. doi: 10.1109/TITS.2016.2542843
  • Mōri, M., & Tsukaguchi, H. (1987). A new method for evaluation of level of service in pedestrian facilities. Transportation Research Part A: General, 21, 223–234. doi: 10.1016/0191-2607(87)90016-1
  • Morlok, E. K. (1978). Introduction to transportation engineering and planning. New York, NY: McGraw-Hill.
  • Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., & Theraulaz, G. (2010). The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PLoS ONE, 5, e10047. doi: 10.1371/journal.pone.0010047
  • Navin, F. P., & Wheeler, R. J. (1969). Pedestrian flow characteristics. Traffic Engineering and Control, 39, 30–36.
  • Okazaki, S., & Matsushita, S. (1993). A study of simulation model for pedestrian movement with evacuation and queuing. In Proceedings of the International conference on engineering for crowd safety, Amsterdam.
  • Older, S. (1968). Movement of pedestrians on footways in shopping streets. Traffic Engineering & Control, 10, 160–163.
  • Papadimitriou, E., Yannis, G., & Golias, J. (2009). A critical assessment of pedestrian behaviour models. Transportation Research Part F: Traffic Psychology and Behaviour, 12, 242–255. doi: 10.1016/j.trf.2008.12.004
  • Parisi, D., & Dorso, C. (2005). Microscopic dynamics of pedestrian evacuation. Physica A: Statistical Mechanics and its Applications, 354, 606–618. doi: 10.1016/j.physa.2005.02.040
  • Parisi, D. R., Gilman, M., & Moldovan, H. (2009). A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions. Physica A: Statistical Mechanics and its Applications, 388, 3600–3608. doi: 10.1016/j.physa.2009.05.027
  • Polus, A., Schofer, J. L., & Ushpiz, A. (1983). Pedestrian flow and level of service. Journal of Transportation Engineering, 109, 46–56. doi: 10.1061/(ASCE)0733-947X(1983)109:1(46)
  • Qu, Y., Gao, Z., Xiao, Y., & Li, X. (2014). Modeling the pedestrian’s movement and simulating evacuation dynamics on stairs. Safety Science, 70, 189–201. doi: 10.1016/j.ssci.2014.05.016
  • Robin, T., Antonini, G., Bierlaire, M., & Cruz, J. (2009). Specification, estimation and validation of a pedestrian walking behavior model. Transportation Research Part B: Methodological, 43, 36–56. doi: 10.1016/j.trb.2008.06.010
  • Rudloff, C., Matyus, T., Seer, S., & Bauer, D. (2011). Can walking behavior be predicted? Analysis of calibration and fit of pedestrian models. Transportation Research Record: Journal of the Transportation Research Board, 2264, 101–109. doi: 10.3141/2264-12
  • Schadschneider, A., Klüpfel, H., Kretz, T., Rogsch, C., & Seyfried, A. (2009). Fundamentals of pedestrian and evacuation dynamics. In Multi-agent Systems for Traffic and Transportation Engineering (pp. 124–154). IGI Global.
  • Seyfried, A., Steffen, B., & Lippert, T. (2006). Basics of modelling the pedestrian flow. Physica A: Statistical Mechanics and its Applications, 368, 232–238. doi: 10.1016/j.physa.2005.11.052
  • Shiwakoti, N., Tay, R., Stasinopoulos, P., & Woolley, P. J. (2017). Likely behaviours of passengers under emergency evacuation in train station. Safety Science, 91, 40–48. doi: 10.1016/j.ssci.2016.07.017
  • Shukla, P. K. (2005). Modeling and simulation of pedestrians (Masters thesis). Indian Institute of Technology Kanpur.
  • Smith, A., James, C., Jones, R., Langston, P., Lester, E., & Drury, J. (2009). Modelling contra-flow in crowd dynamics DEM simulation. Safety Science, 47, 395–404. doi: 10.1016/j.ssci.2008.05.006
  • Tanaboriboon, Y., Hwa, S. S., & Chor, C. H. (1986). Pedestrian characteristics study in Singapore. Journal of Transportation Engineering, 112, 229–235. doi: 10.1061/(ASCE)0733-947X(1986)112:3(229)
  • von Sivers, I., & Köster, G. (2015). Dynamic stride length adaptation according to utility and personal space. Transportation Research Part B: Methodological, 74, 104–117. doi: 10.1016/j.trb.2015.01.009
  • Wang, P. (2016). Understanding social-force model in psychological principles of collective behaviors. arXiv preprint arXiv:1605.05146.
  • Wang, L., Zhang, Q., Cai, Y., Zhang, J., & Ma, Q. (2013). Simulation study of pedestrian flow in a station hall during the spring festival travel rush. Physica A: Statistical Mechanics and its Applications, 392, 2470–2478. doi: 10.1016/j.physa.2013.01.044
  • Wolinski, D., Guy, S. J., Olivier, A. H., Lin, M., & Manocha, D. (2014). Parameter estimation and comparative evaluation of crowd simulations. Computer Graphics Forum, 33, 303–312. doi: 10.1111/cgf.12328
  • Xiao, Y., Gao, Z., Qu, Y., & Li, X. (2016). A pedestrian flow model considering the impact of local density: Voronoi diagram based heuristics approach. Transportation Research Part C: Emerging Technologies, 68, 566–580. doi: 10.1016/j.trc.2016.05.012
  • Xu, S., & Duh, H. B.-L. (2010). A simulation of bonding effects and their impacts on pedestrian dynamics. Ieee Transactions On Intelligent Transportation Systems, 11, 153–161. doi: 10.1109/TITS.2009.2036152
  • Yang, X., Dong, H., Wang, Q., Chen, Y., & Hu, X. (2014). Guided crowd dynamics via modified social force model. Physica A: Statistical Mechanics and its Applications, 411, 63–73. doi: 10.1016/j.physa.2014.05.068
  • Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18, 459–482. doi: 10.1002/cne.920180503
  • Yu, W., & Johansson, A. (2007). Modeling crowd turbulence by many-particle simulations. Physical Review E, 76, 046105. doi: 10.1103/PhysRevE.76.046105
  • Yuen, J., & Lee, E. (2012). The effect of overtaking behavior on unidirectional pedestrian flow. Safety Science, 50, 1704–1714. doi: 10.1016/j.ssci.2011.12.020
  • Yuhaski, S. J., & Smith, J. M. (1989). Modeling circulation systems in buildings using state dependent queueing models. Queueing Systems, 4, 319–338. doi: 10.1007/BF01159471
  • Zanlungo, F., Ikeda, T., & Kanda, T. (2011). Social force model with explicit collision prediction. EPL (Europhysics Letters), 93, 68005. doi: 10.1209/0295-5075/93/68005
  • Zhong, J., & Cai, W. (2015). Differential evolution with sensitivity analysis and the Powell’s method for crowd model calibration. Journal of Computational Science, 9, 26–32. doi: 10.1016/j.jocs.2015.04.013
  • Zhong, J., Hu, N., Cai, W., Lees, M., & Luo, L. (2015). Density-based evolutionary framework for crowd model calibration. Journal of Computational Science, 6, 11–22. doi: 10.1016/j.jocs.2014.09.002
  • Zhou, M., Dong, H., Wang, F.-Y., Wang, Q., & Yang, X. (2016). Modeling and simulation of pedestrian dynamical behavior based on a fuzzy logic approach. Information Sciences, 360, 112–130. doi: 10.1016/j.ins.2016.04.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.