1,377
Views
22
CrossRef citations to date
0
Altmetric
Articles

Interaction of automated driving systems with pedestrians: challenges, current solutions, and recommendations for eHMIs

ORCID Icon, , & ORCID Icon
Pages 788-813 | Received 17 Jul 2020, Accepted 05 Apr 2021, Published online: 12 Apr 2021

References

  • Ackermann, C., Beggiato, M., Schubert, S., & Krems, J. F. (2019). An experimental study to investigate design and assessment criteria: What is important for communication between pedestrians and automated vehicles? Applied Ergonomics, 75, 272–282.
  • Adams, C. (2017). AgeLab researching autonomous vehicle systems in ongoing collaboration with Toyota. AgeLab researching autonomous vehicle systems in ongoing collaboration with Toyota. (C. for Transportation, & Logistics, Eds.).
  • Anthony, S. E. (2016). The trollable self-driving car. The trollable self-driving car.
  • Aouf, R. S. (2018). Jaguar Land Rover’s prototype driverless car makes eye contact with pedestrians. Jaguar Land Rover’s prototype driverless car makes eye contact with pedestrians.
  • Aparow, V. R., Choudary, A., Kulandaivelu, G., Webster, T., Dauwels, J., & de Boer, N. (2019). A comprehensive simulation platform for testing autonomous vehicles in 3D virtual environment. 2019 IEEE 5th international conference on mechatronics system and robots (ICMSR), (pp. 115–119).
  • Beggiato, M., Witzlack, C., & Krems, J. F. (2017). Gap acceptance and time-to-arrival estimates as basis for informal communication between pedestrians and vehicles. Proceedings of the 9th international conference on automotive user interfaces and interactive vehicular applications (pp. 50–57).
  • Blau, M. A. (2015). Driverless vehicles’ potential influence on cyclist and pedestrian facility preferences. Ph.D. dissertation, The Ohio State University.
  • Boersma, R., & Van Arem, B. (2018). Application of driverless electric automated shuttles for public transport in villages: The case of Appelscha. World Electric Vehicle Journal, 9(1), 15.
  • Burns, C. G., Oliveira, L., Hung, V., Thomas, P., & Birrell, S. (2019). Pedestrian attitudes to shared-space interactions with autonomous vehicles–a virtual reality study. International conference on applied human factors and ergonomics (pp. 307–316).
  • Camara, F., Giles, O., Madigan, R., Rothmüller, M., Rasmussen, P. H., Vendelbo-Larsen, S. A., … Fox, C. (2018). Filtration analysis of pedestrian-vehicle interactions for autonomous vehicle control. Proceedings of IAS-15.
  • Camara, F., Romano, R., Markkula, G., Madigan, R., Merat, N., & Fox, C. (2018). Empirical game theory of pedestrian interaction for autonomous vehicles. Proceedings of measuring behavior 2018.
  • Cavallo, V., Dommès, A., Dang, N.-T., & Vienne, F. (2019). A street-crossing simulator for studying and training pedestrians. Transportation Research Part F: Traffic Psychology and Behaviour, 61, 217–228.
  • Chen, Y., Liu, M., Liu, S.-Y., Miller, J., & How, J. P. (2016). Predictive modeling of pedestrian motion patterns with Bayesian nonparametrics. AIAA guidance, navigation, and control conference (p. 1861).
  • Clamann, M., Aubert, M., & Cummings, M. L. (2017). Evaluation of vehicle-to-pedestrian communications displays for autonomous vehicles. The 96th annual research board meeting. Washington D.C. January (pp. 8–12).
  • Colley, M., Walch, M., Gugenheimer, J., & Rukzio, E. (2019). Including people with impairments from the start: external communication of autonomous vehicles. Proceedings of the 11th international conference on automotive user interfaces and interactive vehicular applications: Adjunct proceedings (pp. 307–314).
  • Connor, S. (2016). First self-driving cars will be unmarked so that other drivers don’t try to bully them. The Guardian UK.
  • Constant, A., & Lagarde, E. (2010). Protecting vulnerable road users from injury. PLoS Medicine, 7, e1000228.
  • Cregger, J., Dawes, M., Fischer, S., Lowenthal, C., Machek, E., & Perlman, D. (2018). Low-speed automated shuttles: State of the practice final report. Tech. rep., United States. Joint Program Office for Intelligent Transportation Systems.
  • Davies, C. (2018). Volvo 360c concept gives autonomous cars a purpose and a voice. Volvo 360c concept gives autonomous cars a purpose and a voice.
  • Deb, S., Rahman, M. M., Strawderman, L. J., & Garrison, T. M. (2018). Pedestrians’ receptivity toward fully automated vehicles: Research review and roadmap for future research. IEEE Transactions on Human-Machine Systems, 48, 279–290.
  • Deb, S., Strawderman, L. J., & Carruth, D. W. (2018). Investigating pedestrian suggestions for external features on fully autonomous vehicles: A virtual reality experiment. Transportation Research Part F: Traffic Psychology and Behaviour, 59, 135–149.
  • de Clercq, K., Dietrich, A., Núñez Velasco, J. P., de Winter, J., & Happee, R. (2019). External human-machine interfaces on automated vehicles: Effects on pedestrian crossing decisions. Human Factors, 047.
  • Dey, D., Habibovic, A., Löcken, A., Wintersberger, P., Pfleging, B., Riener, A., … Terken, J. (2020). Taming the eHMI jungle: A classification taxonomy to guide, compare, and assess the design principles of automated vehicles’ external human-machine interfaces. Transportation Research Interdisciplinary Perspectives, 7, 100174.
  • Dey, D., Martens, M., Wang, C., Ros, F., & Terken, J. (2018). Interface concepts for intent communication from autonomous vehicles to vulnerable road users. In Adjunct proceedings of the 10th international conference on automotive user interfaces and interactive vehicular applications. ACM (pp. 82–86). doi:https://doi.org/10.1145/3239092.3265946
  • Diels, C., & Thompson, S. (2017). Information expectations in highly and fully automated vehicles. International conference on applied human factors and ergonomics (pp. 742–748).
  • Doric, I., Frison, A.-K., Wintersberger, P., Riener, A., Wittmann, S., Zimmermann, M., & Brandmeier, T. (2016). A novel approach for researching crossing behavior and risk acceptance: The pedestrian simulator. Adjunct proceedings of the 8th international conference on automotive user interfaces and interactive vehicular applications (pp. 39–44).
  • Dziennus, M., Schieben, A., Ilgen, A., & Käthner, D. (2016). How to interact with a Cybercar?–Attitudes and expectations on the interaction and communication with fully automated vehicles. Tagung experimentell arbeitender Psychologen (TeaP).
  • EasyMile. (2015). Delivering driverless mobility solutions. Delivering driverless mobility solutions.
  • Euro, NCAP. (2017). Pedestrian testing protocol. Euro NCAP| The European new car assessment programme.
  • Ezzati Amini, R., Katrakazas, C., & Antoniou, C. (2019). Negotiation and decision-making for a pedestrian roadway crossing: A literature review. Sustainability, 11, 6713.
  • Färber, B. (2016). Communication and communication problems between autonomous vehicles and human drivers. In: In: Maurer, M., Gerdes, J., Lenz, B., Winner, H. (eds) Autonomous driving (pp. 125–144). Berlin: Springer.
  • Feldstein, I., Dietrich, A., Milinkovic, S., & Bengler, K. (2016). A pedestrian simulator for urban crossing scenarios. IFAC-PapersOnLine, 49, 239–244.
  • Feng, C., Cunbao, Z., & Bin, Z. (2019). Method of pedestrian-vehicle conflict eliminating at unsignalized mid-block crosswalks for autonomous vehicles. 2019 5th international conference on transportation information and safety (ICTIS) (pp. 511–519).
  • Fox, C. W., Camara, F., Markkula, G., Romano, R. A., Madigan, R., & Merat, N. (2018). When should the chicken cross the road?-Game theory for autonomous vehicle-human interactions. Proceedings of the 4th international conference on vehicle technology and intelligent transport systems, 1, pp. 431–439.
  • Fridman, L., Mehler, B., Xia, L., Yang, Y., Facusse, L. Y., & Reimer, B. (2017). To walk or not to walk: Crowdsourced assessment of external vehicle-to-pedestrian displays. arXiv preprint arXiv:1707.02698.
  • Fuest, T., Michalowski, L., Träris, L., Bellem, H., & Bengler, K. (2018). Using the driving behavior of an automated vehicle to communicate intentions – A wizard of Oz study. In 2018 21st international conference on intelligent transportation systems (ITSC) (pp. 3596–3601). IEEE.
  • Google. (2016). Google self-driving car project. Google self-driving car project.
  • Habibovic, A., Andersson, J., Nilsson, M., Lundgren, V. M., & Nilsson, J. (2016). Evaluating interactions with non-existing automated vehicles: Three wizard of Oz approaches. 2016 IEEE intelligent vehicles symposium (IV) (pp. 32–37).
  • Harris, M. (2015). Google’s self-driving cars are accident-pronebut it may not be their fault. The Guardian.
  • Hensch, A.-C., Neumann, I., Beggiato, M., Halama, J., & Krems, J. F. (2019). Effects of a light-based communication approach as an external HMI for automated vehicles – A wizard-of-Oz study. Transactions on Transport Sciences, 10, 18-32.
  • Hitti, N. (2018). Renault unveils driverless Uber-style transport system. Renault unveils driverless Uber-style transport system.
  • Hoffman, G., & Ju, W. (2014). Designing robots with movement in mind. Journal of Human-Robot Interaction, 3, 91–122.
  • Jayaraman, S. K., Tilbury, D., Yang, J., Pradhan, A., & Robert, L. (2020). Analysis and prediction of pedestrian crosswalk behavior during automated vehicle interactions. Proceedings of the international conference on robotics and automation.
  • Jin, S., Qu, X., Xu, C., & Wang, D. H. (2013). Dynamic characteristics of traffic flow with consideration of pedestrians’ road-crossing behavior. Physica A: Statistical Mechanics and Its Applications, 392, 3881–3890.
  • Katrakazas, C., Quddus, M., Chen, W.-H., & Deka, L. (2015). Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions. Transportation Research Part C: Emerging Technologies, 60, 416–442.
  • Keferböck, F., & Riener, A. (2015). Strategies for negotiation between autonomous vehicles and pedestrians. Mensch und Computer 2015–Workshopband.
  • Lagstrom, T., & Lundgren, V. M. (2015). AVIP-Autonomous vehicles interaction with pedestrians. Master of science thesis, Chalmers University of Technology.
  • Lee, Y. K., Rhee, Y.-E., Ryu, J.-K., & Hahn, S. (2020). Gentlemen on the road: Effect of yielding behavior of autonomous vehicle on pedestrian head orientation. arXiv preprint arXiv:2005.07872.
  • Lee, S. C., Stojmenova, K., Sodnik, J., Schroeter, R., Shin, J., & Jeon, M. (2019). Localization vs. internationalization: Research and practice on autonomous vehicles across different cultures. Proceedings of the 11th international conference on automotive user interfaces and interactive vehicular applications: Adjunct proceedings (pp. 7–12).
  • Lehsing, C., & Feldstein, I. T. (2018). Urban interaction–getting vulnerable road users into driving simulation. In: Bengler, K., Drüke, J., Hoffmann, S., Manstetten, D., Neukum, A. (eds) UR: BAN human factors in traffic (pp. 347–362). Wiesbaden: Springer Vieweg.
  • Lehsing, C., Fleischer, M., & Bengler, K. (2016). On the track of social interaction-A non-linear quantification approach in traffic conflict research. 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC) (pp. 2046–2051).
  • Llorca, D. F., Milanés, V., Alonso, I. P., Gavilán, M., Daza, I. G., Pérez, J., & Sotelo, MÁ. (2011). Autonomous pedestrian collision avoidance using a fuzzy steering controller. IEEE Transactions on Intelligent Transportation Systems, 12, 390–401.
  • Löcken, A., Golling, C., & Riener, A. (2019). How should automated vehicles interact with pedestrians?: A comparative analysis of interaction concepts in virtual reality. Proceedings of the 11th international conference on automotive user interfaces and interactive vehicular applications (pp. 262–274). New York, NY, USA: ACM. doi:https://doi.org/10.1145/3342197.3344544
  • Löcken, A., Wintersberger, P., Frison, A., & Riener, A. (2019). Investigating user requirements for communication between automated vehicles and vulnerable road users. 2019 IEEE intelligent vehicles symposium (IV) (pp. 879–884).
  • Lundgren, V. M., Habibovic, A., Andersson, J., Lagström, T., Nilsson, M., Sirkka, A., … Saluäär, D. (2017). Will there be new communication needs when introducing automated vehicles to the urban context? In: Stanton, N., Landry, S., Di Bucchianico, G., Vallicelli, A. (eds) Advances in human aspects of transportation (pp. 485–497). Cham: Springer .
  • Madigan, R., Nordhoff, S., Fox, C., Ezzati Amini, R., Louw, T., Wilbrink, M., … Merat, N. (2019). Understanding interactions between automated road transport systems and other road users: A video analysis. Transportation Research Part F: Traffic Psychology and Behaviour, 66, 196–213.
  • Mahadevan, K., Sanoubari, E., Somanath, S., Young, J. E., & Sharlin, E. (2019). AV-pedestrian interaction design using a pedestrian mixed traffic simulator. In Proceedings of the 2019 on designing interactive systems conference (pp. 475–486).
  • Mahadevan, K., Somanath, S., & Sharlin, E. (2018). Communicating awareness and intent in autonomous vehicle-pedestrian interaction. Proceedings of the 2018 CHI conference on human factors in computing systems (p. 429).
  • Matthews, M., Chowdhary, G. V., & Kieson, E. (2017). Intent communication between autonomous vehicles and pedestrians. arXiv preprint arXiv:1708.07123.
  • McAllister, R., Gal, Y., Kendall, A., Van Der Wilk, M., Shah, A., Cipolla, R., & Weller, A. V. (2017). Concrete problems for autonomous vehicle safety: Advantages of bayesian deep learning. International joint conferences on Artificial Intelligence, Inc.
  • Merat, N., Louw, T., Madigan, R., Wilbrink, M., & Schieben, A. (2018). What externally presented information do VRUs require when interacting with fully automated road transport systems in shared space? Accident Analysis & Prevention, 118, 244–252.
  • Mercedes-Benz. (2015). The Mercedes F015 luxury in motion. The Mercedes F015 luxury in motion.
  • Møgelmose, A., Trivedi, M. M., & Moeslund, T. B. (2015). Trajectory analysis and prediction for improved pedestrian safety: Integrated framework and evaluations. 2015 IEEE intelligent vehicles symposium (IV) (pp. 330–335).
  • Moore, D., & Bosch, R. (2019). Visualizing implicit eHMI for autonomous vehicles. AutomotiveUI ‘19 proceedings of the 11th international conference on automotive user interfaces and interactive vehicular applications: Adjunct proceedings (pp. 475–477).
  • NAVYA. (2015). Autonom shuttle. Autonom Shuttle.
  • Nissan Motor Corporation. (2015). Nissan IDS concept. Nissan IDS concept.
  • Palmeiro, A. R., van der Kint, S., Vissers, L., Farah, H., de Winter, J. C., & Hagenzieker, M. (2018). Interaction between pedestrians and automated vehicles: A wizard of Oz experiment. Transportation Research Part F: Traffic Psychology and Behaviour, 58, 1005–1020.
  • Peters, A. (2017). What if driverless cars let you cross the street when you wave at them? What if driverless cars let you cross the street when you wave at them?
  • Rad, S. R., de Almeida Correia, G. H., & Hagenzieker, M. (2020). Pedestrians’ road crossing behaviour in front of automated vehicles: Results from a pedestrian simulation experiment using agent-based modelling. Transportation Research Part F: Traffic Psychology and Behaviour, 69, 101–119.
  • Rasouli, A., Kotseruba, I., Kunic, T., & Tsotsos, J. K. (2019). PIE: A large-scale dataset and models for pedestrian intention estimation and trajectory prediction. In Proceedings of the IEEE international conference on computer vision (pp. 6262–6271).
  • Rasouli, A., & Tsotsos, J. K. (2019). Autonomous vehicles that interact with pedestrians: A survey of theory and practice. IEEE Transactions on Intelligent Transportation Systems, 21(3), 900–918.
  • Rehder, E., Wirth, F., Lauer, M., & Stiller, C. (2018). Pedestrian prediction by planning using deep neural networks. In 2018 IEEE International Conference on Robotics and Automation (ICRA), (pp. 1–5).
  • Richtel, M., & Dougherty, C. (2015). Google’s driverless cars run into problem: Cars with drivers. Google’s driverless cars run into problem: Cars with drivers.
  • Riener, A., Appel, A., Dorner, W., Huber, T., Kolb, C., & Wagner, H. (Eds.). (2020). Autonome Shuttlebusse im ÖPNV – Analysen und Bewertungen zum Fallbeispiel Bad Birnbach aus technischer, gesellschaftlicher und planerischer Sicht (1st ed.). Springer Vieweg Heidelberg. doi:https://doi.org/10.1007/978-3-662-59406-3
  • Risto, M., Emmenegger, C., Vinkhuyzen, E., Cefkin, M., & Hollan, J. (2017). Human-vehicle interfaces: The power of vehicle movement gestures in human road user coordination. In 9th international driving symposium on human factors in driver assessment, training, and vehicle design.
  • Rothenbücher, D., Li, J., Sirkin, D., Mok, B., & Ju, W. (2016). Ghost driver: A field study investigating the interaction between pedestrians and driverless vehicles. In 25th IEEE international symposium on robot and human interactive communication (RO-MAN) (pp. 795–802).
  • Schneemann, F., & Gohl, I. (2016). Analyzing driver-pedestrian interaction at crosswalks: A contribution to autonomous driving in urban environments. In 2016 IEEE intelligent vehicles symposium (IV) (pp. 38–43).
  • Schneemann, F., & Heinemann, P. (2016). Context-based detection of pedestrian crossing intention for autonomous driving in urban environments. 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2243–2248).
  • Semcon. (2016). The smiling car. The Smiling Car.
  • Šikudová, E., Malinovská, K., Škoviera, R., Škovierová, J., Uller, M., & Hlaváć, V. (2019). Estimating pedestrian intentions from trajectory data. 2019 IEEE 15th international conference on intelligent computer communication and processing (ICCP) (pp. 19–25).
  • Song, Y. E., Lehsing, C., Fuest, T., & Bengler, K. (2018). External HMIs and their effect on the interaction between pedestrians and automated vehicles. International conference on intelligent human systems integration (pp. 13–18).
  • Urmson, C. P., Mahon, I. J., Dolgov, D. A., & Zhu, J. (2015). Pedestrian notifications. Pedestrian notifications. Google Patents.
  • Velasco, J. P. N., Farah, H., van Arem, B., & Hagenzieker, M. P. (2019). Studying pedestrians’ crossing behaviour when interacting with automated vehicles using virtual reality. Transportation Research Part F: Traffic Psychology and Behaviour, 66, 1–14.
  • Vilimek, R., & Keinath, A. (2018). User-centred design and evaluation as a prerequisite for the success of disruptive innovations: An electric vehicle case study. In: Regan, M. A., Horberry, T., Stevens, A. (Eds.) Driver acceptance of new technology (pp. 169–186). CRC Press. Farnham: Ashgate.
  • Völz, B., Mielenz, H., Gilitschenski, I., Siegwart, R., & Nieto, J. (2019). Inferring pedestrian motions at urban crosswalks. IEEE Transactions on Intelligent Transportation Systems, 20, 544–555.
  • Wang, Z., & Papanikolopoulos, N. (2020). Estimating pedestrian crossing states based on single 2D body pose. In Proceedings of the IEEE international conference on intelligent robots and systems (IROS) (Vol. 2).
  • Yang, D., Redmill, K., & Ozguner, U. (2020). A multi-state social force based framework for vehicle-pedestrian interaction in uncontrolled pedestrian crossing scenarios. arXiv preprint arXiv:2005.07769.
  • Zhang, X., Chen, H., Yang, W., Jin, W., & Zhu, W. (2020). Pedestrian path prediction for autonomous driving at un-signalized crosswalk using W/CDM and MSFM. IEEE Transactions on Intelligent Transportation Systems, 1–13.
  • Zhang, J., Vinkhuyzen, E., & Cefkin, M. (2017). Evaluation of an autonomous vehicle external communication system concept: A survey study. International conference on applied human factors and ergonomics (pp. 650–661).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.