Publication Cover
Educational Psychology
An International Journal of Experimental Educational Psychology
Volume 37, 2017 - Issue 7
349
Views
7
CrossRef citations to date
0
Altmetric
Articles

Developmental changes in the relationship between magnitude acuities and mathematical achievement in elementary school children

&
Pages 873-887 | Received 12 May 2015, Accepted 30 Nov 2015, Published online: 12 Jan 2016

References

  • Agrillo, C., Piffer, L., & Adriano, A. (2013). Individual differences in non-symbolic numerical abilities predict mathematical achievements but contradict ATOM. Behavioral and Brain Functions, 9 (1), 26. doi:10.1186/1744-9081-9-26
  • Bonny, J. W., & Lourenco, S. F. (2013). The approximate number system and its relation to early math achievement: Evidence from the preschool years. Journal of Experimental Child Psychology, 114, 375–388.10.1016/j.jecp.2012.09.015
  • Boyer, C. B., & Merzbach, U. C. (2011). A history of mathematics. Hoboken, NJ: John Wiley & Sons.
  • Brannon, E. M., Lutz, D., & Cordes, S. (2006). The development of area discrimination and its implications for number representation in infancy. Developmental Science, 9, F59–F64.10.1111/desc.2006.9.issue-6
  • Brannon, E. M., & Terrace, H. S. (1998). Ordering of the numerosities 1 to 9 by monkeys. Science, 282, 746–749.10.1126/science.282.5389.746
  • Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1831–1840.10.1098/rstb.2009.0028
  • Cappelletti, M., Chamberlain, R., Freeman, E. D., Kanai, R., Butterworth, B., Price, C. J., & Rees, G. (2014). Commonalities for numerical and continuous quantity skills at temporo-parietal junction. Journal of Cognitive Neuroscience, 26, 986–999.10.1162/jocn_a_00546
  • Castronovo, J., & Göbel, S. M. (2012). Impact of high mathematics education on the number sense. PLoS ONE, 7, e33832.10.1371/journal.pone.0033832
  • Chen, Q., & Li, J. (2014). Association between individual differences in non-symbolic number acuity and math performance: A meta-analysis. Acta Psychologica, 148, 163–172.
  • Cheng, Y.-L., & Mix, K. S. (2014). Spatial training improves children's mathematics ability. Journal of Cognition and Development, 15, 2–11.10.1080/15248372.2012.725186
  • Cohen, J. (2013). Statistical power analysis for the behavioral sciences. New York, NY: Academic Press.
  • Cordes, S., & Brannon, E. M. (2009). The relative salience of discrete and continuous quantity in young infants. Developmental Science, 12, 453–463.10.1111/desc.2009.12.issue-3
  • Crollen, V., Grade, S., Pesenti, M., & Dormal, V. (2013). A common metric magnitude system for the perception and production of numerosity, length, and duration. Frontiers in psychology, 4, 449. doi:10.3389/fpsyg.2013.00449
  • De Smedt, B., Noël, M.-P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2, 48–55.10.1016/j.tine.2013.06.001
  • De Smedt, B., Verschaffel, L., & Ghesquière, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103, 469–479.10.1016/j.jecp.2009.01.010
  • Dehaene, S. (2001). Précis of the number sense. Mind & language, 16, 16–36.
  • Dehaene, S. (2011). The number sense: How the mind creates mathematics. New York, NY: Oxford University Press.
  • Dehaene, S., Izard, V., Pica, P., & Spelke, E. (2006). Core knowledge of geometry in an Amazonian indigene group. Science, 311, 381–384.10.1126/science.1121739
  • Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14, 218–224.10.1016/j.conb.2004.03.008
  • Delgado, A. R., & Prieto, G. (2004). Cognitive mediators and sex-related differences in mathematics. Intelligence, 32, 25–32.10.1016/S0160-2896(03)00061-8
  • DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: Effects of feedback and training. Frontiers in human neuroscience, 6 , 68. doi:10.3389/fnhum.2012.00068.
  • Feigenson, L., Libertus, M. E., & Halberda, J. (2013). Links between the intuitive sense of number and formal mathematics ability. Child Development Perspectives, 7, 74–79.
  • Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low-income homes: Contributions of inhibitory control. Developmental Science, 16, 136–148.10.1111/desc.2012.16.issue-1
  • Gebuis, T., & Gevers, W. (2011). Numerosities and space; indeed a cognitive illusion! A reply to de Hevia and Spelke (2009). Cognition, 121, 248–252.10.1016/j.cognition.2010.09.008
  • Gebuis, T., & Reynvoet, B. (2012). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141, 642–648.10.1037/a0026218
  • Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., … Inglis, M. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLoS ONE, 8, e67374.10.1371/journal.pone.0067374
  • Guillaume, M., Nys, J., & Mussolin, C. (2013). Differences in the acuity of the Approximate Number System in adults: The effect of mathematical ability. Acta Psychologica, 144, 506–512.10.1016/j.actpsy.2013.09.001
  • Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the ‘number sense’: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44, 1457–1465.10.1037/a0012682
  • Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109, 11116–11120.10.1073/pnas.1200196109
  • Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455, 665–668.10.1038/nature07246
  • Hurewitz, F., Gelman, R., & Schnitzer, B. (2006). Sometimes area counts more than number. Proceedings of the National Academy of Sciences, 103, 19599–19604.10.1073/pnas.0609485103
  • Huttenlocher, J., Duffy, S., & Levine, S. (2002). Infants and toddlers discriminate amount: Are they measuring? Psychological Science, 13, 244–249.10.1111/1467-9280.00445
  • Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011). Non-verbal number acuity correlates with symbolic mathematics achievement: But only in children. Psychonomic Bulletin & Review, 18, 1222–1229.
  • Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences, 106, 10382–10385.10.1073/pnas.0812142106
  • Jang, S., & Cho, S. (2015). The acuity for numerosity (but not continuous magnitude) discrimination correlates with quantitative problem solving but not routinized arithmetic. Current Psychology. Advance online publication. doi:10.1007/s12144-015-9354-6
  • Kaufman, A. S., & Kaufman, N. L. (1983). Kaufman assessment battery for children. Circle Pines: John Wiley & Sons,.
  • Kyttälä, M., & Lehto, J. E. (2008). Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence. European Journal of Psychology of Education, 23, 77–94.10.1007/BF03173141
  • Leibovich, T., & Henik, A. (2014). Comparing performance in discrete and continuous comparison tasks. The Quarterly Journal of Experimental Psychology, 67, 899–917.10.1080/17470218.2013.837940
  • Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14, 1292–1300.10.1111/desc.2011.14.issue-6
  • Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Is approximate number precision a stable predictor of math ability? Learning and Individual Differences, 25, 126–133.10.1016/j.lindif.2013.02.001
  • Libertus, M. E., Odic, D., & Halberda, J. (2012). Intuitive sense of number correlates with math scores on college-entrance examination. Acta Psychologica, 141, 373–379.10.1016/j.actpsy.2012.09.009
  • Linsen, S., Verschaffel, L., Reynvoet, B., & De Smedt, B. (2014). The association between children’s numerical magnitude processing and mental multi-digit subtraction. Acta Psychologica, 145, 75–83.10.1016/j.actpsy.2013.10.008
  • Lourenco, S. F., Bonny, J. W., Fernandez, E. P., & Rao, S. (2012). Nonsymbolic number and cumulative area representations contribute shared and unique variance to symbolic math competence. Proceedings of the National Academy of Sciences, 109, 18737–18742.10.1073/pnas.1207212109
  • Lourenco, S. F., & Huttenlocher, J. (2008). The representation of geometric cues in infancy. Infancy, 13, 103–127.10.1080/15250000701795572
  • Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121, 256–261.10.1016/j.cognition.2011.07.009
  • Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1–6. Developmental Science, 17, 714–726.10.1111/desc.2014.17.issue-5
  • Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82, 1224–1237.
  • McComb, K., Packer, C., & Pusey, A. (1994). Roaring and numerical assessment in contests between groups of female lions, Panthera leo. Animal Behaviour, 47, 379–387.10.1006/anbe.1994.1052
  • Mix, K. S., & Cheng, Y.-L. (2011). The relation between space and math: Developmental and educational implications. Advances in Child Development and Behavior, 42, 197–243.
  • Nieder, A. (2005). Counting on neurons: The neurobiology of numerical competence. Nature Reviews Neuroscience, 6, 177–190.10.1038/nrn1626
  • Odic, D., Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Developmental change in the acuity of approximate number and area representations. Developmental Psychology, 49, 1103–1112.10.1037/a0029472
  • Park, K., Kim, K., Song, Y., Jeong, D., & Jeong, I. (2008). KISE-basic academic achievement tests (KISE-BAAT). Ansan: Korea National Institute for Special Education.
  • Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44, 547–555.10.1016/j.neuron.2004.10.014
  • Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306, 499–503.10.1126/science.1102085
  • Rousselle, L., Dembour, G., & Noël, M.-P. (2013). Magnitude representations in williams syndrome: Differential acuity in time, space and number processing. PLoS ONE, 8, e72621.10.1371/journal.pone.0072621
  • Sasanguie, D., Göbel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or number–space mappings: What underlies mathematics achievement? Journal of Experimental Child Psychology, 114, 418–431.10.1016/j.jecp.2012.10.012
  • Skagerlund, K., & Träff, U. (2014). Development of magnitude processing in children with developmental dyscalculia: Space, time, and number. Frontiers in psychology, 5, 675. doi:10.3389/fpsyg.2014.00675.
  • Spelke, E., Lee, S. A., & Izard, V. (2010). Beyond core knowledge: Natural geometry. Cognitive Science, 34, 863–884.10.1111/cogs.2010.34.issue-5
  • Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Number sense in infancy predicts mathematical abilities in childhood. Proceedings of the National Academy of Sciences, 110, 18116–18120.10.1073/pnas.1302751110
  • VanMarle, K., & Wynn, K. (2006). Six-month-old infants use analog magnitudes to represent duration. Developmental Science, 9, F41–F49.10.1111/desc.2006.9.issue-5
  • Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7, 483–488.10.1016/j.tics.2003.09.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.