Publication Cover
Educational Psychology
An International Journal of Experimental Educational Psychology
Volume 38, 2018 - Issue 10
458
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Unrealistic responses to realistic problems with missing information: what are important barriers?

ORCID Icon, &
Pages 1221-1238 | Received 25 Oct 2017, Accepted 16 Jul 2018, Published online: 13 Oct 2018

References

  • Ärlebäck, J. B. (2009). On the use of realistic Fermi problems for introducing mathematical modelling in school. The Mathematics Enthusiast, 6, 331–364.
  • Blum, W. (2007). Modelling and applications in mathematics education: The 14th ICMI study (Vol. 10). New Xork, NY: Springer. doi:10.1007/978-0-387-29822-1
  • Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In J. S. Cho (Ed.), Proceedings of the 12th international congress on mathematical education (pp. 73–96). New York: Springer. doi:10.1007/978-3-319-12688-3_9
  • Blum, W., & Leiß, D. (2007). How do students and teachers deal with mathematical modeling problems? The example of Sugerloaf. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling: Education, engineering and economics – ICTMA12 (pp. 222–231). Chichester, UK: Horwood. doi:10.1533/9780857099419.5.221
  • Bülow, S., Hahn, G., Herold, A., Herrndorf, S., Koch, C., Mester, D., … Tomczak, E. (2013). Spürnasen Mathematik: 3./4. Schuljahr [Good noses mathematics: 3./4. Grade]. Berlin, Germany: Duden Schulbuch.
  • Dewolf, T., Van Dooren, W., Cimen, E., & Verschaffel, L. (2013). The impact of illustrations and warnings on solving mathematical word problems realistically. The Journal of Experimental Education, 82, 103–120. doi:10.1080/00220973.2012.745468
  • Galbraith, P. L., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. ZDM Mathematics Education, 38, 143–162. doi:10.1007/BF02655886
  • Greer, B. (1993). The mathematical modeling perspective on wor(l)d problems. Journal of Mathematical Behavior, 12, 239–250.
  • Götz, L., Lingel, K., Schneider, W. (2013). DEMAT 5+. Deutscher Mathematiktest für fünfte Klassen [DEMAT 5+, German mathematics test for the fifth grade]. Göttingen, Germany: Hogrefe.
  • Hattie, J., Biggs, J. B., & Purdie, N. (1996). Effects of learning skills interventions on student learning: A meta-analysis. Review of Educational Research, 66, 99–136. doi:10.3102/00346543066002099
  • Hinsley, D. A., Hayes, J. R., & Simon, H. A. (1977). From words to equations: Meaning and representation in algebra word problems. In M. A. Just & P. A. Carpenter (Eds.), Cognitive Processes in Comprehension (pp. 89–106). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Jiménez, L., & Verschaffel, L. (2013). Development of children’s solutions of non-standard arithmetic word problem solving. Revista de Psicodidáctica, 19, 93–123. doi:10.1387/RevPsicodidact.7865
  • Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology Research and Development, 48, 63–85. doi:10.1007/BF02300500
  • Kintsch, W., & Greeno, J. G. (1985). Understanding and solving word arithmetic problems. Psychological Review, 92, 109–129. doi:10.1037/0033-295X.92.1.109
  • Krawitz, J., & Schukajlow, S. (2018). Do students value modelling problems, and are they confident they can solve such problems? Value and self-efficacy for modelling, word, and intra-mathematical problems. ZDM Mathematics Education, 50, 143–157. doi:10.1007/s11858-017-0893-1
  • Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. Chicago: Chicago University Press.
  • Maaß, K. (2009). Mathematikunterricht weiterentwickeln [Developing mathematics education]. Berlin, Germany: Cornelson.
  • Maaß, K. (2010). Classification scheme for modelling tasks. Journal für Mathematik-Didaktik, 31, 285–311. doi:10.1007/s13138-010-0010-2
  • Nesher, P. (1980). The stereotyped nature of school word problems. For the Learning of Mathematics, 1(1), 41–48. doi:10.2307/40247701
  • Niss, M., Blum, W., & Galbraith, P. L. (2007). Introduction. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 1–32). New York: Springer. doi:10.1007/978-0-387-29822-1
  • Nortvedt, G. A. (2011). Coping strategies applied to comprehend multistep arithmetic word problems by students with above-average numeracy skills and below-average reading skills. The Journal of Mathematical Behavior, 30, 255–269. doi:10.1016/j.jmathb.2011.04.003
  • Peter-Koop, A. (2009). Teaching and understanding mathematical modelling through Fermi-problems. In B. Clarke, B. Grevholm, & R. Millman (Eds.), Tasks in primary mathematics teacher education: Purpose, use and exemplars (pp. 131–146). Boston, MA: Springer. doi:10.1007/978-0-387-09669-8_10
  • Quilici, J. L., & Mayer, R. E. (1996). Role of examples in how students learn to categorize statistics word problems. Journal of Educational Psychology, 88(1), 144–161. doi:10.1037/0022-0663.88.1.144
  • Reed, S., Stebick, S., Comey, B., & Carroll, D. (2012). Finding similarities and differences in the solutions of word problems. Journal of Educational Psychology, 104, 636–646. doi:10.1037/a0027181
  • Reusser, K., & Stebler, R. (1997). Every word problem has a solution-The social rationality of mathematical modeling in schools. Learning and Instruction, 7, 309–327. doi:10.1016/S0959-4752(97)00014-5
  • Riley, M., Greeno, J. G., & Heller, J. I. (1983). Development of children's problem-solving ability in arithmetic. New York, NY: Academic Press.
  • Rittle-Johnson, B., & Star, J. R. (2007). Does comparing solution methods facilitate conceptual and procedural knowledge? An experimental study on learning to solve equations. Journal of Educational Psychology, 99, 561–574. doi:10.1037/0022-0663.99.3.561
  • Schukajlow, S., & Krug, A. (2013a). Planning, monitoring and multiple solutions while solving modelling problems. In A. M. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th conference of the international group for the psychology of mathematics education (Vol.4, pp. 177–184). Kiel, Germany: PME.
  • Schukajlow, S., & Krug, A. (2013b). Uncertainty orientation, preferences for solving tasks with multiple solutions and modelling. In Ç. H. B. Ubuz & M. A. Mariotti (Eds.), Proceedings of the eight congress of the European Society for Research in Mathematics Education (pp. 1429–1438). Ankara, Turkey: Middle East Technical University.
  • Schukajlow, S., & Krug, A. (2014). Do multiple solutions matter? Prompting multiple solutions, interest, competence, and autonomy. Journal for Research in Mathematics Education, 45, 497–533. doi:10.5951/jresematheduc.45.4.0497
  • Schukajlow, S., Krug, A., & Rakoczy, K. (2015). Effects of prompting multiple solutions for modelling problems on students' performance. Educational Studies in Mathematics, 89, 393–417. doi:10.1007/s10649-015-9608-0
  • Silver, E. A., Ghousseini, H., Gosen, D., Charalambous, C. Y., & Font Strawhun, B. T. (2005). Moving from rhetoric to praxis: Issues faced by teachers in having students consider multiple solutions for problems in the mathematics classroom. Journal of Mathematical Behavior, 24, 287–301. doi:10.1016/j.jmathb.2005.09.009
  • Spiro, R. J., Feltovich, P. J., Jacobson, M. J., & Coulson, R. L. (1991). Knowledge representation, content specification, and the development of skill in situation specific knowledge assembly: Some constructivist issues as they relate to cognitive flexibility theory and hypertext. Educational Technology, 31, 22–25. doi:10.2307/44401694
  • Sriraman, B., & Lesh, R. (2006). Modeling conceptions revisited. ZDM, 38, 247–254. doi:10.1007/BF02652808
  • Staub, F. C., & Reusser, K. (1995). The role of presentational structures in understanding and solving mathematical word problems. In C. A. Weaver, S. Mannes, & C. R. Fletcher (Eds.), Discourse comprehension: Essays in honor of Walter Kintsch (pp. 285–305). Hillsdale, NJ: Lawrence Erlbaum.
  • Stillman, G. (2011). Applying metacognitive knowledge and strategies in applications and modelling tasks at secondary school. In G. Kaiser, W. Blum, R. B. Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling: ICTMA14. Netherlands: Springer. doi:10.1007/978-94-007-0910-2_18
  • Stillman, G., & Galbraith, P. L. (1998). Applying mathematics with real world connections: Metacognitive characteristics of secondary students. Educational Studies in Mathematics, 36, 157–194. doi:10.1023/A:1003246329257
  • Tsamir, P., Tirosh, D., Tabach, M., & Levenson, E. (2010). Multiple solution methods and multiple outcomes – Is it a task for kindergarten children? Educational Studies in Mathematics, 73, 217–231. doi:10.1007/s10649-009-9215-z
  • Verschaffel, L., & De Corte, E. (1997). Teaching realistic mathematical modelling in elementary school: A teaching experiment with fifth graders. Journal for Research in Mathematics Education, 28, 577–601. doi:10.2307/749692
  • Verschaffel, L., De Corte, E., & Lasure, S. (1994). Realistic considerations in mathematical school arithmetic word problems. Learning and Instruction, 4, 273–294. doi:10.1016/0959-4752(94)90002-7
  • Verschaffel, L., De Corte, E., & Lasure, S. (1999). Children's conceptions about the role of real-world knowledge in mathematical modelling of school word problems. In W. Schnotz, S. Vosniadou, & M. Carretero (Eds.), New perspectives on conceptual change (pp. 175–189). Oxford: Elsevier.
  • Verschaffel, L., Greer, B., & de Corte, E. (Eds.). (2000). Making sense of word problems. Lisse, the Netherlands: Swets & Zeitlinger.
  • Verschaffel, L., Greer, B., Van Dooren, W., & Mukhopadhyay, S. (Eds.). (2009). Words and worlds modelling verbal descriptions of situations. Rotterdam, The Netherlands: Sense Publishers.
  • Weyns, A., Van Dooren, W., Dewolf, T., & Verschaffel, L. (2017). The effect of emphasising the realistic modelling complexity in the text or picture on pupils’ realistic solutions of P-items. Educational Psychology, 37, 1173–1185. doi:10.1080/01443410.2016.1259461
  • Yoshida, H., Verschaffel, L., & De Corte, E. (1997). Realistic considerations in solving problematic word problems: Do Japanese and Belgian children have the same difficulties? Learning and Instruction, 7, 329–338. doi:10.1016/S0959-4752(97)00007-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.