Publication Cover
Biological Agriculture & Horticulture
An International Journal for Sustainable Production Systems
Volume 34, 2018 - Issue 2
253
Views
4
CrossRef citations to date
0
Altmetric
Articles

Genetic variability, gains from selection and genetic correlations for pod yield and nutritional traits in African landraces of bambara groundnut

Pages 71-87 | Received 02 Aug 2016, Accepted 26 Sep 2017, Published online: 06 Oct 2017

References

  • Alake CO, Alake OO. 2016. Genetic diversity for agro-nutritional traits in African landraces of Vigna subterranean Germplasm. J Crop Improv. 30(4):378–398.10.1080/15427528.2016.1171817
  • Alake CO, Ayo-Vaughan MA, Ariyo OJ. 2015. Selection criteria for grain yield and stability in Bambara groundnut (Vigna subterranean (L) Verdc) landraces. Acta Agric Scand Sect. B. 65(5):433–447.
  • Al-Karaki GN, Ereifej KI. 1999. Relationships between seed yield and chemical composition of field peas grown under semi-arid Mediterranean conditions. J Agron Crop Sci. 182:279–284.10.1046/j.1439-037x.1999.00298.x
  • Allard RW. 1960. Principle of plant breeding. New York: Wiley; p. 485.
  • Amarteifio JO, Tibe O, Njogu RM. 2006. The mineral composition of Bambara groundnut (Vigna subterranea [L.] Verdc.) grown in Southern Africa. Afr J Bot. 5:2408–2411.
  • Anon. 2006. Lost crops of Africa. Washington (DC): National Academy Press.
  • AOAC. 1996. Official methods of analysis. 16th ed. Washington (DC): Association of Official Analytical Chemists.
  • Assefa T, Beebe SE, Rao IM, Cuasquer JB, Duque MC, Rivera M, Battisti A, Lucchin M. 2013. Pod harvest index as a selection criterion to improve drought resistance in white pea bean. Field Crops Res. 148:24–33.10.1016/j.fcr.2013.04.008
  • Atlin GN, Cooper M, Bjørnstad Å. 2001. A comparison of formal and participatory breeding approaches using selection theory. Euphytica 122:463–475.10.1023/A:1017557307800
  • Atlin GN, Vanessa S, Silke W, Cosmos M, Dan M, Bindiganavile V, Hans-Peter P, Albrecht EM. 2012. Strategies to subdivide a target population of environments: results from the CIMMYT-led maize hybrid testing programs in Africa. Crop Sci. 52:2143–2154.
  • Bänziger M, Betrán FJ, Lafitte HR. 1997. Efficiency of high-nitrogen selection environments for improving maize for low-nitrogen target environments. Crop Sci. 37:1103–1109.10.2135/cropsci1997.0011183X003700040012x
  • Belewu MA, Fagbemi T, Dosumu OO, Adeniyi MO. 2008. Physico-chemical and anti-nutritional properties of some lesser known tree and leguminous seeds. Int J Agric Res. 3:237–242.10.3923/ijar.2008.237.242
  • Berchie JN, Opoku M, Adu-Dapaah H, Agyemang A, Sarkodie-Addo J, Asare E, Addo J, Akuffo H. 2012. Evaluation of five bambara groundnut (Vigna subterranea (L.) Verdc.) landraces to heat and drought stress at Tono-Navrongo, Upper East Region of Ghana. Afr J Agric Res. 7:250–256.
  • Bouzerzour H, Dekhili M. 1995. Heritabilities, gains from selection and genetic correlations for grain yield of barley grown in two contrasting environments. Field Crops Res. 41:173–178.10.1016/0378-4290(95)00005-B
  • Briat JF, Duc C, Ravet K, Gaymard F. 2010. Ferritins and iron storage in plants. Biochim Biophys Acta. 1800:806–814.10.1016/j.bbagen.2009.12.003
  • Falconer DS. 1982. Introduction to quantitative genetics. London: Longman; p. 340.
  • Falconer DS, Mackay TFC. 1996. Introduction to quantitative genetics. 4th ed. New York: Longman; p. 132–133.
  • Gelin JP, Forster S, Grafton KF, McClean PE, Rojas-Cifuentes GA. 2007. Analysis of seed zinc and other minerals in a recombinant inbred population of navy bean (Phaseolus vulgaris L.). Crop Sci. 47:1361–1366.10.2135/cropsci2006.08.0510
  • Gómez OJ, Blair MW, Frankow-Lindberg BE, Gullberg U. 2004. Molecular and phenotypic diversity of common bean landraces from Nicaragua. Crop Sci. 44:1412–1418.10.2135/cropsci2004.1412
  • Govindaraj M, Rai KN, Shanmugasundaram P. 2016. Intra-population genetic variance for grain iron and zinc contents and agronomic traits in pearl millet. Crop J. 4:48–54.10.1016/j.cj.2015.11.002
  • Graham RD, Welch RM. 2002. Plant food micronutrient composition and human nutrition. Commun Soil Sci Plant Anal. 31(11–14):1627–1640.
  • Gressel J. 2008. Genetic glass ceilings: transgenics for crop biodiversity. Baltimore (MD): Johns Hopkins University Press.
  • Ijarotimi SO, Esho RT. 2009. Comparison of nutritional composition and anti-nutrient status of fermented, germinated and roasted ambara groundnut seeds (Vigna ambaranean). Br Food J. 111:376–386.10.1108/00070700910951515
  • Jacob KN, Koutoua A, Denise BMA. 2016. Effect of sowing year and seedbed type on yield and yield component in bambara groundnut (Vigna subterranean (L) Verdc) in Woodland savannahs of Cote d’Ivoire. Int J Agron Agric Res. 8(8):10–16.
  • Janila P, Nigam SN, Abhishek R, Anil Kumar V, Manohar SS, Venuprasad R. 2015. Iron and zinc concentrations in peanut (Arachis hypogaea L.) seeds and their relationship with other nutritional and yield parameters. J Agric Sci. 153 (6): 975–994.10.1017/S0021859614000525
  • Jonah PM. 2012. Seasonal variation and pearson correlation in yield and yield components in bambara groundnut. American-Eurasian J Agric Environ Sci. 12(4):521–527.
  • Jonah PM, Adeniji OT, Wammanda DT. 2010. Variability and genetic correlations for yield and yield characters in some bambara groundnut (Vigna subterranea) cultivars. Int J Agric Biol. 12:303–307.
  • Kadams AM, Sajo AA. 1998. Variability and correlation studies in yield and yield components in bambara groundnut (Vigna subterrenea L. Verdc). J Appl Sci Manag. 2:66–70.
  • Karikari SK. 2000. Variability between local and exotic bambara groundnut landraces in Botswana. Afr Crop Sci J. 8:1–8.
  • Karikari SK, Tabona TT. 2004. Constitutive traits and selective indices of Bambara groundnut (Vigna subterranea (L) Verdc) landraces for drought tolerance under Botswana conditions. Phys Chem Earth A/B/C. 29:1029–1034.10.1016/j.pce.2004.08.002
  • Makanda I, Tongoona P, Madamba R, Icishahayo D, Derera J. 2009. Evaluation of bambara groundnut varieties for off-season production in Zimbabwe. Afr Crop Sci J. 16(3):175–183.
  • Massawe F, Mayes S, Cheng A. 2016. Crop diversity: an unexploited treasure trove for food security. Trends Plant Sci. 21(5):365–368.10.1016/j.tplants.2016.02.006
  • Massawe FJ, Mwale SS, Azam-Ali SN, Roberts JA. 2005. Breeding bambara groundnut (Vigna subterranean): strategic considerations. Afri J Biotechnol. 4:463–471.
  • Mather K. 1949. Biometrical genetics. London: Methuen and Co.; p. 1–162.
  • Merrill AL, Watt BK. 1973. Energy value of food e basis and derivation. US Department of Agriculture Handbook No 74. Washington (DC): ARS United States Department of Agriculture.
  • Minka SR, Bruneteau M. 2000. Partial chemical composition of bambara pea [Vigna subterranea (L.) Verde]. Food Chem. 68:273–276.10.1016/S0308-8146(99)00186-7
  • Mohammed MS, Shimelis HA, Laing MD. 2016. Phenotypic characterization of diverse Bambara groundnut (Vigna subterranea [L.] Verdc.) germplasm collections through seed morphology. Genet Resour Crop Evol. 63(5):889–899.10.1007/s10722-016-0374-3
  • Morgounov A, Gómez-Becerra HF, Abugalieva A, Dzhunusova M, Yessimbekova M, Muminjanov H, Zelenskiy Y, Ozturk L, Cakmak I. 2007. Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 155:193–203.10.1007/s10681-006-9321-2
  • Onwubiko NIC, Odum OB, Utazi CO, Poly-Mbah PC. 2011. Studies on the adaptation of Bambara groundnut (Vigna subterranea) in Owerri South eastern Nigeria. N Y Sci J. 4(2):60–67.
  • Otegui MS, Capp R, Staehelin LA. 2002. Developing seeds of Arabidopsis store different minerals in two types of vacuoles and in the endoplasmic reticulum. Plant Cell 14:1311–1327.10.1105/tpc.010486
  • Oyeleke GO, Afolabi O, Isola AD. 2012. Some quality characteristics and carbohydrate fractions of bambara groundnut (Vigna subterranea L.) Seed flour. J Appl Chem. 4:16–19.
  • Padi FK. 2008. Genotype × environment interaction for yield and reaction to leaf spot infections in groundnut in semiarid West Africa. Euphytica 164(1):143–161.10.1007/s10681-008-9677-6
  • Parker RJ, McGilliard LD, Gill JL. 1970. Genetic correlation and response to selection in simulated populations. Theor Appl Genet. 40:157–162.
  • Phakamas N, Patanothai A, Pannangpetch K, Jogloy S, Hoogenboom G. 2008. Dynamic patterns of components of genotype × environment interaction for pod yield of peanut over multiple years: a simulation approach. Field Crops Res. 106:9–21.10.1016/j.fcr.2007.10.008
  • Pungulani L, Kadyampakeni D, Nsapato L, Kachapila M. 2012. Selection of high-yielding and farmers’ preferred genotypes of Bambara nut in Malawi. Am J Plant Sci. 3:1802–1808.10.4236/ajps.2012.312A221
  • Redjeki ES, Mayes S, Azam-ali S. 2011. Evaluating the stability and adaptability of Bambara groundnut landraces in different ecologies. Proceedings of the 2nd International Symposium on Underutilized Plant Species held in Kuala Lumpur, Malaysia; June 26–July 1. p. 1–11.
  • Robertson A. 1959. The sampling variance of the genetic correlation coefficient. Biometrics 15(3):469–485.10.2307/2527750
  • SAS Institute. 2013. SAS 94 TS1M1 (94M1) Window version. Cary (NC): SAS Institute Inc.
  • Sesay A, Magagula CN, Mansuetus AB. 2008. Influence of sowing date and environmental factors on the development and yield of bambara groundnut (Vigna subterranea) landraces in a sub-tropical region. Exp Agric. 44:167–183.
  • Shimelis H, Hugo A. 2011. Determination of selection criteria for seed yield and seed oil content in Vernonia (Vernonia galamensis variety ethiopica). Ind Crops Prod. 33:436–439.10.1016/j.indcrop.2010.10.033
  • Sprent JI, Odee DW, Dakora FD. 2010. African legumes: a vital but under-utilized resource. J Exp Bot. 61(5):1257–1265.10.1093/jxb/erp342
  • Szilagyi L. 2003. Influence of drought on seed yield components in common bean. Bulg J Plant Physiol. 320–330. Special issue.
  • Touré Y, Koné M, Kouakou TH, Koné D. 2012. Agromorphological and phenological variability of 10 Bambara groundnut [Vigna subterranea (L.) Verdc. (Fabaceae)] landraces cultivated in the Ivory Coast. Tropicultura 30:216–221.
  • White PJ, Broadley MR. 2009. Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 182:49–84.10.1111/j.1469-8137.2008.02738.x
  • Windig JJ. 1997. The calculation and significance testing of genetic correlations across environments. J Evol Biol. 10:853–874.10.1111/jeb.1997.10.issue-6
  • Witten S, Bohm H, Aulrich K. 2015. Effects of variety and environment on the contents of crude nutrients lysine, methionine and cysteine in organically produced field peas and field beans. Appl Agric Forestry Res 65(3/4):205–216.
  • Yao DN, Kouassi KN, Erba D, Scazzina F, Pellegrini N, Casiraghi MC. 2015. Nutritive evaluation of the bambara groundnut Ci12 landrace [Vigna subterranea (L.) Verdc. (Fabaceae)] produced in Côte d’Ivoire. Int J Mol Sci. 16:21428–21441.10.3390/ijms160921428
  • Zarcinas BA, Cartwright B, Spouncer LR. 1987. Nitric acid digestion and multi element analysis of plant material by inductively coupled plasma spectrometry. Commun Soil Sci Plant Anal. 18(1):131–146.10.1080/00103628709367806

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.