3,744
Views
18
CrossRef citations to date
0
Altmetric
Articles

The Effect of a Magnetic Field on the Melting of Gallium in a Rectangular Cavity

, , &

References

  • Z. Zongqin, and A. Bejan, “The problem of time-dependent natural convection melting with conduction in the solid,” Int. j. Heat Mass Transfer, vol. 32, no. 12, pp. 2447–2457, 1989. DOI:10.1016/0017-9310(89)90204-4.
  • K. Sasaguchi, and R. Viskanta, “Phase change heat transfer during melting and resolidification of melt around cylindrical heat source (s)/sink (s),” J. Energy Resour. Technol., vol. 111, no. 1, pp. 43–49, 1989. DOI:10.1115/1.3231400.
  • H. Ge, H. Li, S. Mei, and J. Liu, “Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area,” Renewable Sustainable Energy Rev., vol. 21, pp. 331–346, 2013. DOI:10.1016/j.rser.2013.01.008.
  • S. Liu, Y. Li, and Y. Zhang, “Review on Heat Transfer Mechanisms and Characteristics in Encapsulated PCMs,” Heat Transfer Eng., vol. 36, no. 10, pp. 880–901, 2015. DOI:10.1080/01457632.2015.965093.
  • T. F. Cheng, “Numerical analysis of nonlinear multiphase Stefan problems,” Comput. Struct., vol. 75, no. 2, pp. 225–233, 2000. DOI:10.1016/S0045-7949(99)00071-1.
  • N. S. Dhaidan, and J. M. Khodadadi, “Melting and convection of phase change materials in different shape containers: A review,” Renewable Sustainable Energy Rev., vol. 43, pp. 449–477, 2015. DOI:10.1016/j.rser.2014.11.017.
  • D. R. Lynch, “Unified approach to simulation on deforming elements with application to phase change problems,” J. Comput. Phys., vol. 47, no. 3, pp. 387–411, 1982. DOI:10.1016/0021-9991(82)90090-0.
  • D. R. Lynch, and J. M. Sullivan, “Heat conservation in deforming element phase change simulation,” J. Comput. Phys., vol. 57, no. 2, pp. 303–317, 1985. DOI:10.1016/0021-9991(85)90047-6.
  • N. Zabaras, and Y. Ruan, “A deforming finite element method analysis of inverse Stefan problems,” Int. J. Numer. Meth. Eng., vol. 28, no. 2, pp. 295–313, 1989. DOI:10.1002/nme.1620280205.
  • M. Chen, S. Wu, H. Wang, and J. Zhang, “Study of ice and snow melting process on conductive asphalt solar collector,” Sol. Energy Mater. Sol.Cells, vol. 95, no. 12, pp. 3241–3250, 2011. Doi:10.1016/j.solmat.2011.07.013.
  • A. N. Afifah, S. Syahrullail, and N. A. C. Sidik, “Magnetoviscous effect and thermomagnetic convection of magnetic fluid: A review,” Renewable Sustainable Energy Rev., vol. 55, pp. 1030–1040, 2016. DOI:10.1016/j.rser.2015.11.018.
  • J. X. Wang et al., “Experimental investigation of the thermal control effects of phase change material based packaging strategy for on-board permanent magnet synchrono.us motors,” Energy Convers. Manage., vol. 123, pp. 232–242, 2016. DOI:10.1016/j.enconman.2016.06.045.
  • C. Gau, and R. Viskanta, “Melting and solidification of a pure metal on a vertical wall,” J. Heat Transfer, vol. 108, no. 1, pp. 174–181, 1986. DOI:10.1115/1.3246884.
  • S. Kang, K. S. Ha, H. T. Kim, J. H. Kim, and I. C. Bang, “An experimental study on natural convection heat transfer of liquid gallium in a rectangular loop,” Int. J. Heat Mass Transfer, vol. 66, pp. 192–199, 2013. DOI:10.1016/j.ijheatmasstransfer.2013.07.026.
  • M. A. Rady, and A. K. Mohanty, “Natural convection during melting and solidification of pure metals in a cavity,” Numer. Heat Transfer, Part A, vol. 29, no. 1, pp. 49–63, 1996. DOI:10.1080/10407789608913778.
  • N. Zehtabiyan-Rezaie, M. Mirzaei, and M. Saffar-Avval, “Numerical Investigation of Magnetic Field Effect on Heat Transfer and Entropy Generation in Channel; New Approach for Fluid and Length Scale Selections,” Heat Transfer Eng., vol. 38, no. 13, pp. 1222–1232, 2017. DOI:10.1080/01457632.2016.1239961.
  • D. Chatterjee, and P. Halder, “Magnetoconvective Transport in a Lid-Driven Square Enclosure with Two Rotating Circular Cylinders,” Heat Transfer Eng., vol. 37, no. 2, pp. 198–209, 2016. DOI:10.1080/01457632.2015.1044416.
  • N. S. Bondareva, and M. A. Sheremet, “Effect of inclined magnetic field on natural convection melting in a square cavity with a local heat source,” J. Magn. Magn. Mater., vol. 419, pp. 476–484, 2016. DOI:10.1016/j.jmmm.2016.06.050.
  • A. D. Brent, V. R. Voller, and K. T. J. Reid, “Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal,” Numer. Heat Transfer, Part, vol. 13, no. 3, pp. 297–318, 1988.
  • A. Joulin, Z. Younsi, L. Zalewski, D. R. Rousse, and S. Lassue, “A numerical study of the melting of phase change material heated from a vertical wall of a rectangular enclosure,” Int. J. Comput. Fluid Dyn., vol. 23, no. 7, pp. 553–566, 2009. DOI:10.1080/10618560903203723.
  • R. Viskanta, “Review of three-dimensional mathematical modeling of glass melting,” J. Non-Cryst. Solids, vol. 177, pp. 347–362, 1994. DOI:10.1016/0022-3093(94)90549-5.
  • S. Patankar, Numerical heat transfer and fluid flow, New York, NY, USA: Hemisphere Publishing Corporation, Taylor & Francis Group, 1980.
  • V. R. Voller, “Fast implicit finite-difference method for the analysis of phase change problems,” Numer. Heat Transfer, vol. 17, no. 2, pp. 155–169, 1990. DOI:10.1080/10407799008961737.
  • G. D. Raithby, and K. G. T. Hollands, Natural convection, Handbook of heat transfer, vol. 3. New York, NY, USA: McGraw-Hill, 1998.
  • J. P. Garandet, T. Alboussiere, and R. Moreau, “Buoyancy driven convection in a rectangular enclosure with a transverse magnetic field,” Int. J. Heat Mass Transfer, vol. 35, no. 4, pp. 741–748, 1992. DOI:10.1016/0017-9310(92)90242-K.
  • M. Sheikholeslami, and D. D. Ganji, “Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer,” Energy, vol. 75, pp. 400–410, 2014. DOI:10.1016/j.energy.2014.07.089.