352
Views
3
CrossRef citations to date
0
Altmetric
Articles

Numerical Study of Bubble Coalescence Heat Transfer During Nucleate Pool Boiling

, &

References

  • V. P. Carey, Liquid Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment. Washington, DC, USA: Hemisphere Publishing Corporation, 1992, pp. 112–120.
  • D. M. Christopher, H. Wang, and X. F. Peng, “Dynamics of bubble motion and bubble top jet flows from moving vapor bubbles on microwires,” J. Heat Transfer, vol. 127, pp. 1260–1268, 2005. DOI: 10.1115/1.2039109.
  • V. K. Dhir, “Mechanistic prediction of nucleate boiling heat transfer – Achievable or a hopeless task?,” J. Heat Transfer, vol. 128, pp. 1–12, 2006. DOI: 10.1115/1.2136366.
  • S. Siedel, S. Cioulachtjian, and J. Bonjour, “Experimental analysis of bubble growth, departure and interactions during pool boiling on artificial nucleation sites,” Exp Therm Fluid Sci., vol. 32, pp. 1504–1511, 2008. DOI: 10.1016/j.expthermflusci.2008.04.004.
  • J. L. Bi, X. P. Lin, and D. M. Christopher, “Effects of bubble coalescence dynamics on heat flux distributions under bubbles,” AICHE Journal, vol. 59, pp. 1735–1745, 2013. DOI: 10.1002/aic.13932.
  • I. Golobic, J. Petkovsek, H. Gjerkes, and D. B. R. Kenning, “Horizontal chain coalescence of bubbles in saturated pool boiling on a thin foil,” Int. J. Heat Mass Transfer, vol. 54, pp. 5517–5526, 2011.
  • A. Coulibaly, X. P. Lin, J. L. Bi, and D. M. Christopher, “Bubble coalescence at constant wall temperatures during subcooled nucleate pool boiling,” Exp Therm Fluid Sci., vol. 44, pp. 209–218, 2013. DOI: 10.1016/j.expthermflusci.2012.06.010.
  • J. Kim, “Review of nucleate pool boiling bubble heat transfer mechanisms,” Int. J. Multiph. Flow, vol. 35, no. 12, pp. 1067–1076, 2009. DOI: 10.1016/j.ijmultiphaseflow.2009.07.008.
  • A. Coulibaly, J. L. Bi, X. P. Lin, and D. M. Christopher, “Effect of bubble coalescence on the wall heat transfer during subcooled pool boiling,” Int. J. Therm Sci., vol. 76, pp. 101–109, 2014. DOI: 10.1016/j.ijthermalsci.2013.08.019.
  • L. Rayleigh, “On pressure developed in a liquid during collapse of a spherical cavity,” Philos. Mag. Series 6, vol. 34, no. 200, pp. 94–98, 1917. DOI: 10.1080/14786440808635681.
  • H. K. Forster and N. Zuber, “Growth of a vapor bubble in a superheated liquid,” J. Appl. Phys., vol. 25, pp. 474–478, 1954. DOI: 10.1063/1.1721664.
  • M. S. Plesset and S. A. Zwick, “The growth of vapor bubbles in superheated liquids,” J. Appl. Phys., vol. 25, pp. 493–500, 1954. DOI: 10.1063/1.1721668.
  • J. N. Chung, J. L. Chen, and S. C. Maroo, “A review of recent progress on nano/micro scale nucleate boiling fundamentals,” Frontiers in Heat and Mass Transfer, vol. 2, no. 2, pp. 023004, 2011. DOI: 10.5098/hmt.v2.2.3004.
  • Y. X. Liao, and D. Lucas, “Computational modelling of flash boiling flows: A literature survey,” Int. J. Heat Mass Transfer, vol. 111, pp. 246–265, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.03.121.
  • V. K. Dhir, “Numerical simulations of pool-boiling heat transfer,” AIChE Journal, vol. 47, pp. 813–834, 2001. DOI: 10.1002/aic.690470407.
  • Y. Zhao and T. Tsuruta, “Prediction of bubble behavior in subcooled pool boiling based on microlayer model,” JSME Int J., Ser. B, vol. 45, no. 2, pp. 346–354, 2002. DOI: 10.1299/jsmeb.45.346.
  • G. Son, N. Ramanujapu, and V. K. Dhir, “Numerical simulation of bubble merger process on a single nucleation site during pool nucleate boiling,” J.Heat Transfer, vol. 124, pp. 51–62, 2002. DOI: 10.1115/1.1420713.
  • J. F. Wu and V. K. Dhir, “Numerical simulations of the dynamics and heat transfer associated with a single bubble in subcooled pool boiling,” J. Heat Transfer, vol. 132, no. 11, pp. 111501-1–111501-15, 2010. DOI: 10.1115/1.4002093.
  • E. Aktinol and V. K. Dhir, “Numerical simulation of nucleate boiling phenomenon coupled with thermal response of the solid,” Microgravity Sci. Technol., vol. 24, no. 4, pp. 255–265, 2012. DOI: 10.1007/s12217-012-9308-7.
  • G. Lu, X. D. Wang, and W. M. Yan, “Nucleate boiling inside small evaporating droplets: An experimental and numerical study,” Int. J. Heat Mass Transfer, vol. 108, pp. 2253–2261, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.081.
  • W. Z. Fang, L. Chen, Q. J. Kang, and W. Q. Tao, “Lattice boltzmann modeling of pool boiling with large liquid-gas density ratio,” Int. J.Therm Sci., vol. 114, pp. 172–183, 2017. DOI: 10.1016/j.ijthermalsci.2016.12.017.
  • T. Sun and W. Z. Li, “Three-dimensional Numerical simulation of nucleate boiling bubble by lattice boltzmann method,” Computers and Fluids, vol. 88, pp. 400–409, 2013. DOI: 10.1016/j.compfluid.2013.10.009.
  • P. Peñas-López et al., “The history effect on bubble growth and dissolution. Part 2. Experiments and simulations of a spherical bubble attached to a horizontal flat plate,” J. Fluid Mech., vol. 820, pp. 479–510, 2017. DOI: 10.1017/jfm.2017.221.
  • W. B. Wu, Y. L. Liu, and A. M. Zhang, “Numerical investigation of 3D bubble growth and detachment,” Ocean Engineering, vol. 138, pp. 86–104, 2017. DOI: 10.1016/j.oceaneng.2017.04.023.
  • J. M. Bonjour, M. Clausse, and M. Lallemand, “Experimental study of the coalescence phenomenon during nucleate pool boiling,” Exp. Therm Fluid Sci., vol. 20, pp. 180–187, 2000. DOI: 10.1016/S0894-1777(99)00044-8.
  • H. T. Kim, H. K. Park, Y. T. Kim, K. H. Bang, and J. S. Suh, “Flow boiling in an inclined channel with downward-facing heated upper wall,” Heat Transfer Eng., vol. 35, no. 5, pp. 492–500, 2014. DOI: 10.1080/01457632.2013.833053.
  • K. Suzuki, A. Oshima, C. Hong, and M. Mochizuki, “Subcooled flow boiling in a minichannels,” Heat Transfer Eng., vol. 32, no. 7–8, pp. 667–672, 2011. DOI: 10.1080/01457632.2010.509770.
  • A. Mukherjee and V. K. Dhir, “Study of lateral merger of vapor bubbles during nucleate pool boiling,” J. Heat Transfer, vol. 126, pp. 1023–1039, 2004. DOI: 10.1115/1.1834614.
  • J. L. Bi, X. P. Lin, and D. M. Christopher, “Effects of bubble coalescence dynamics on heat flux distributions under bubbles,” AICHE Journal, vol. 59, no. 5, pp. 1735–1745, 2013. DOI: 10.1002/aic.13932.
  • J. L. Bi, X. P. Lin, D. M. Christopher, and X. F. Li, “Analysis of coalescence phenomena on microheaters at two surface superheats,” Int. J. Heat Mass Transfer, vol. 67, pp. 798–809, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.08.082.
  • A. Sielaff, J. Dietl, S. Herbert, and P. Stephan, “The influence of system pressure on bubble coalescence in nucleate boiling,” Heat Transfer Eng., vol. 35, no. 5, pp. 420–429, 2014. DOI: 10.1080/01457632.2013.830917.
  • L. Zhang, and M. Shoji, “Nucleation site interaction in pool boiling on the Artificial surface,” Int. J. Heat Mass Transfer, vol. 46, pp. 513–522, 2003. DOI: 10.1016/S0017-9310(02)00291-0.
  • M. Mann, K. Stephan, and P. Stephan, “Influence of heat conduction in the wall on nucleate boiling heat transfer,” Int. J. Heat Mass Transfer, vol. 43, no. 12, pp. 2193–2203, 2000. DOI: 10.1016/S0017-9310(99)00292-6.
  • I. Golobic, J. Petkovsek, and D. B. R. Kenning, “Bubble growth and horizontal coalescence in saturated pool boiling on a titanium foil, investigated by high-speed IR thermography,” Int. J. Heat Mass Transfer, vol. 55, no. 4, pp. 1385–1402, 2012. DOI: 10.1016/j.ijheatmasstransfer.2011.08.021.
  • R. H. Chen et al., “Numerical investigation on coalescence of bubble pairs rising in a stagnant liquid,” Chem. Eng. Sci., vol. 66, pp. 5055–5063, 2011. DOI: 10.1016/j.ces.2011.06.058.
  • Y. Y. Yan and Y. Q. Zu, “Numerical simulation of bubble deformation, flow, and coalescence in a microchannel under pseudo-nucleation conditions,” Heat Transfer Eng., vol. 32, no. 13–14, pp. 1182–1190, 2011. DOI: 10.1080/01457632.2011.562731.
  • C. S. Meena, A. Deep, and A. K. Das, “Understanding of interactions for bubbles generated at neighboring nucleation sites,” Heat Transfer Eng., 2017. DOI: 10.1080/01457632.2017.1338866.
  • J. C. Collier and J. R. Thome, Convective Boiling and Condensation. Oxford, UK: Clarendon Press, 1994.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.