393
Views
4
CrossRef citations to date
0
Altmetric
Articles

An Analytical Technique of Transient Phase-Change Material Melting Calculation for Cylindrical and Tubular Containers

, &

References

  • S. Liu, Y. Li, and Y. Zhang, “Review on heat transfer mechanisms and characteristics in encapsulated PCMs,” Heat Transfer Engineering, vol. 36, no. 10, pp. 880–901, 2015. DOI:10.1080/01457632.2015.965093.
  • F. Agyenim, N. Hewitt, P. Eames, and M. Smyth, “A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS),” Renewable and Sustainable Energy Reviews, vol. 14, pp. 615–628, 2010. DOI:10.1016/j.rser.2009.10.015.
  • M. Lacroix, “Numerical simulation of a shell-and-tube latent heat thermal energy storage unit,” Solar Energy, vol. 50, pp. 357–367, 1993. DOI:10.1016/0038-092X(93)90029-N.
  • A. J. Parry, P. C. Eames, and F. B. Agyenim, “Modeling of thermal energy storage shell-and-tube heat exchanger,” Heat Transfer Engineering, vol. 35, no. 1, pp. 1–14, 2014. DOI:10.1080/01457632.2013.810057.
  • A. Trp, “An experimental and numerical investigation of heat transfer during technical grade paraffin melting and solidification in a shell-and-tube latent thermal energy storage unit,” Solar Energy, vol. 79, pp. 648–660, 2005. DOI:10.1016/j.solener.2005.03.006.
  • A. Trp, K. Lenic, and B. Frankovic, “Analysis of the influence of operating conditions and geometric parameters on heat transfer in water-paraffin shell-and-tube latent thermal energy storage unit,” Applied Thermal Engineering, vol. 26, pp. 1830–1839, 2006. DOI:10.1016/j.applthermaleng.2006.02.004.
  • Y. Zhang, and A. Faghri, “Semi-analytical solution of thermal energy storage system with conjugate laminar forced convection,” Int. J. Heat and Mass Transfer, vol. 39, pp. 717–724, 1996. DOI:10.1016/0017-9310(95)00172-7.
  • Y. Zhang, and A. Faghri, “Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube,” Int. J. Heat and Mass Transfer, vol. 39, pp. 3165–3173, 1996. DOI:10.1016/0017-9310(95)00402-5.
  • J. Tu, W. Shin, H. Mak, and W. W. Yuen, “Development and testing of an energy storage material/phase change material enhanced heat sink,” Heat Transfer Engineering, vol. 38, no. 17, pp. 1429–1438, 2017. DOI:10.1080/01457632.2016.1255071.
  • A. Erek, Z. Ilken, and M. A. Acar, “Experimental and numerical investigation of thermal energy storage with a finned tube,” Int. J. Energy Res., vol. 29, pp. 283–301, 2005. DOI:10.1002/er.1057.
  • K. Ermis, A. Erek, and I. Dincer, “Heat transfer analysis of phase change processes in a finned-tube thermal energy storage system using artificial neural network,” Int. J. Heat and Mass Transfer, vol. 50, pp. 3163–3175, 2007. DOI:10.1016/j.ijheatmasstransfer.2006.12.017.
  • K. A. R. Ismail, C. L. F. Alves, and M. S. Modesto, “Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder,” Applied Thermal Engineering, vol. 21, pp. 53–77, 2001. DOI:10.1016/S1359-4311(00)00002-8.
  • F. Agyenim, P. Eames, and M. Smyth, “A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins,” Solar Energy, vol. 83, pp. 1509–1520, 2009. DOI:10.1016/j.solener.2009.04.007.
  • F. Agyenim, P. Eames, and M. Smyth, “Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array,” Renewable Energy, vol. 35, pp. 198–207, 2010. DOI:10.1016/j.renene.2009.03.010.
  • J.-Y. Long, “Numerical and experimental investigation for heat transfer in triplex concentric tube with phase change material for thermal energy storage,” Solar Energy, vol. 82, pp. 977–985, 2008. DOI:10.1016/j.solener.2008.05.006.
  • M. Medrano, M. O. Yilmaz, M. Nogués, I. Martorell, J. Roca, and L. F. Cabeza, “Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems,” Applied Energy, vol. 86, pp. 2047–2055, 2009. DOI:10.1016/j.apenergy.2009.01.014.
  • N. K. Bansal, and D. Buddhi, “An analytical study of a latent heat storage system in a cylinder,” Energy Conversion and Management, vol. 33, pp. 235–242, 1992. DOI:10.1016/0196-8904(92)90113-B.
  • M. Esen, A. Durmus, and A. Durmus, “Geometric design of solar-aided latent heat store depending on various parameters and phase change materials,” Solar Energy, vol. 62, pp. 19–28, 1998. DOI:10.1016/S0038-092X(97)00104-7.
  • M. Esen, and T. Ayhan, “Development of a model compatible with solar assisted cylindrical energy storage tank and variation of stored energy with time for different phase-change materials,” Energy Conversion and Management, vol. 37, pp. 1775–1785, 1996. DOI:10.1016/0196-8904(96)00035-0.
  • E. M. Sparrow, E. D. Larson, and J. W. Ramsey, “Freezing on a finned tube for either conduction-controlled or natural-convection-controlled heat transfer,” Int. J. Heat Mass Transf., vol. 24, pp. 273–284, 1981. DOI:10.1016/0017-9310(81)90035-1.
  • A. G. Bathelt, and R. Viskanta, “Heat transfer and interface motion during melting and solidification around a finned heat source/sink,” J. Heat Transfer, vol. 103, pp. 720–726, 1981. DOI:10.1115/1.3244532.
  • T. Betzel, and H. Beer, “Experimental investigation of heat transfer during melting around a horizontal tube with and without axial fins,” Int. Comm. Heat Mass Transfer, vol. 13, pp. 639–649, 1986. DOI:10.1016/0735-1933(86)90042-4.
  • P. V. Padmanabhan, and M. V. Krishna Murthy, “Outward phase change in a cylindrical annulus with axial fins on the inner tube,” Int. J. Heat Mass Transfer, vol. 29, pp. 1855–1868, 1986. DOI:10.1016/0017-9310(86)90004-9.
  • I. Hamdani, and T. M. I. Mahlia, “Investigation of melting heat transfer characteristics of latent heat thermal storage unit with finned tube,” Proc. Eng., vol. 50, pp. 122–128, 2012.
  • S. Mat, A. A. Al-Abidi, K. Sopian, M. Y. Sulaiman, and A. Mohammad, “Enhance heat transfer for PCM melting in triplex tube with internal-external fins,” Energy Conversion and Management, vol. 74, pp. 223–236, 2013. DOI:10.1016/j.enconman.2013.05.003.
  • A. A. Al-Abidi, S. Mat, K. Sopian, M. Y. Sulaiman, and A. Mohammad, “Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers,” Appl. Therm. Eng., vol. 53, pp. 147–156, 2013. DOI:10.1016/j.applthermaleng.2013.01.011.
  • A. A. Al-Abidi, S. Mat, K. Sopian, M. Y. Sulaiman, and A. Mohammad, “Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins,” Energ. Buildings, vol. 68, pp. 33–41, 2014. DOI:10.1016/j.enbuild.2013.09.007.
  • C. Liu, and D. Groulx, “Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system,” Int. J. Therm. Sci., vol. 82, pp. 100–110, 2014. DOI:10.1016/j.ijthermalsci.2014.03.014.
  • R. E. Murray, and D. Groulx, “Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 1 consecutive charging and discharging,” Renew. Energ., vol. 62, pp. 571–581, 2014. DOI:10.1016/j.renene.2013.08.007.
  • R. E. Murray, and D. Groulx, “Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 2 simultaneous charging and discharging,” Renew. Energ., vol. 63, pp. 724–734, 2014. DOI:10.1016/j.renene.2013.10.004.
  • A. Sciacovelli, F. Gagliardi, and V. Verda, “Maximization of performance of a PCM latent heat storage system with innovative fins,” Appl. Energ., vol. 137, pp. 707–715, 2014. DOI:10.1016/j.apenergy.2014.07.015.
  • E. M. Sparrow, and C. F. Hsu, “Analysis of two-dimensional freezing on the outside of a coolant-carrying tube,” Int. J. Heat Mass Transfer, vol. 24, pp. 1345–1357, 1981. DOI:10.1016/0017-9310(81)90185-X.
  • C. F. Hsu, and E. M. Sparrow, “A closed-form analytical solution for freezing adjacent to a plane wall cooled by forced convection,” J. Heat Transfer, vol. 103, pp. 596–598, 1981. DOI:10.1115/1.3244508.
  • N. Shamsundar, “Formulas for freezing outside a circular tube with axial variation of coolant temperature,” Int. J. Heat Mass Transfer, vol. 25, pp. 1614–1616, 1982. DOI:10.1016/0017-9310(82)90043-6.
  • G. P. Zhang, S. Weinbaum, and L. M. Jiji, “An approximate 3-dimensional solution for melting or freezing around a buried pipe beneath a free-surface,” J. Heat Transfer, vol. 108, pp. 900–906, 1986. DOI:10.1115/1.3247031.
  • R. V. Seeniraj, R. Velraj, and N. P. Kannan, “Analytical solutions for planar and cylindrical axisymmetric melting with heat capacity effects of flowing stream and PCM,” Int. Communications Heat Mass Transfer, vol. 25, pp. 1041–1053, 1998. DOI:10.1016/S0735-1933(98)00095-5.
  • S. K. Saha, and P. Dutta, “Performance analysis of heat sink with phase-change materials subjected to transient and cyclic heating,” Heat Transfer Engineering, vol. 36, no. 16, pp. 1349–1359, 2015. DOI:10.1080/01457632.2015.1003714.
  • V. Dubovsky, G. Ziskind, and R. Letan, “Analytical model of a PCM-air heat exchanger,” Applied Thermal Engineering, vol. 31, pp. 3453–3462, 2011. DOI:10.1016/j.applthermaleng.2011.06.031.
  • V. Dubovsky, G. Ziskind, and R. Letan, “Performance analysis of a cross-flow PCM-air heat exchanger,” Proceeding of Innostock 2012 – the 12th International Conference on Energy Storage, Lleida, Spain, May 2012.
  • M. Ezra, Y. Kozak, V. Dubovsky, and G. Ziskind, “Analysis and optimization of melting temperature span for a multiple-PCM latent heat thermal energy storage unit,” Applied Thermal Engineering, vol. 93, pp. 315–329, 2016. DOI:10.1016/j.applthermaleng.2015.09.040.
  • H. Shmueli, G. Ziskind, and R. Letan, “Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments,” Int. J. Heat Mass Transfer, vol. 53, pp. 4082–4091, 2010. DOI:10.1016/j.ijheatmasstransfer.2010.05.028.
  • E. Assis, L. Katsman, G. Ziskind, and R. Letan, “Numerical and experimental study of melting in a spherical shell,” Int. J. Heat and Mass Transfer, vol. 50, pp. 1790–1804, 2007. DOI:10.1016/j.ijheatmasstransfer.2006.10.007.
  • M. A. Cotton, and J. D. Jackson, “Method of solution of the time-dependent fully developed energy equation,” Proc. Instn. Mech. Engrs., Part C: Journal of Mechanical Engineering Science, vol. 204, pp. 135–138, 1990. DOI:10.1243/PIME_PROC_1990_204_087_02.
  • J. Padet, “Transient convective heat transfer,” J. of the Braz. Soc. of Mech. Sci. & Eng., vol. 27, pp. 75–95, 2005. DOI:10.1590/S1678-58782005000100005.
  • Y. Kozak, M. M. Farid, and G. Ziskind, “Experimental and comprehensive theoretical study of cold storage packages containing PCM,” Applied Thermal Engineering, vol. 115, pp. 899–912, 2017. DOI:10.1016/j.applthermaleng.2016.12.127.
  • N. Bonyadi, S. K. Somek, C. C. Ozalevli, D. Baker, and I. Tari, “Numerical analysis of phase change material characteristics used in a thermal energy storage device,” Heat Transfer Engineering, vol. 39, no. 3, pp. 268–276, 2018 ( in press). DOI:10.1080/01457632.2017.1295741.
  • J. Holman, Heat Transfer, 10th ed. New York: McGraw-Hill, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.