204
Views
18
CrossRef citations to date
0
Altmetric
Articles

Double-Diffusive Natural Convection in a Mixture-Filled Cavity with Walls' Opposite Temperatures and Concentrations

ORCID Icon, , ORCID Icon & ORCID Icon

References

  • C. Béghein, “Contribution à l’étude numérique de la convection naturelle thermosolutale en cavité. Application à la diffusion de polluants dans les pièces d'habitation,” Ph.D. thesis, INSA de Lyon, Lyon, France, 1992.
  • I. Sezai, and A. A. Mohamad, “Double diffusive convection in a cubic enclosure with opposing temperature and concentration gradients,” Phys. Fluids, vol. 12, no. 9, pp. 2210–2223, Aug. 2000. DOI: 10.1063/1.1286422.
  • J. Serrano-Arellano, J. Xamán, G. Álvarez, and M. Gijón-Rivera, “Heat and mass transfer by natural convection in a square cavity filled with a mixture of air–CO2,” Int. J. Heat Mass Transf., vol. 64, pp. 725–734, Sep. 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.05.038.
  • J. Xamán, A. Ortiz, G. Álvarez, and Y. Chávez, “Effect of a contaminant source (CO2) on the air quality in a ventilated room,” Energy, vol. 36, no. 5, pp. 3302–3318, May 2011. DOI: 10.1016/j.energy.2011.03.026.
  • J. Xamán, J. Tun, G. Álvarez, Y. Chávez, and F. Noh, “Optimum ventilation based on the overall ventilation effectiveness for temperature distribution in ventilated cavities,” Int. J. Therm. Sci., vol. 48, no. 8, pp. 1574–1585, Aug. 2009. DOI: 10.1016/j.ijthermalsci.2008.12.008.
  • C. Béghein, F. Haghighat, and F. Allard, “Numerical study of double-diffusive natural convection in a square cavity,” Int. J. Heat Mass Transf., vol. 35, no. 4, pp. 833–846, Apr. 1992. DOI: 10.1016/0017-9310(92)90251-M.
  • A. Bahloul, L. Kalla, R. Bennacer, H. Beji, and P. Vasseur, “Natural convection in a vertical porous slot heated from below and with horizontal concentration gradients,” Int. J. Therm. Sci., vol. 43, no. 7, pp. 653–663, Jul. 2004. DOI: 10.1016/j.ijthermalsci.2003.10.012.
  • M. Bourich, M. Hasnaoui, and A. Amahmid, “Double-diffusive natural convection in a porous enclosure partially heated from below and differentially salted,” Int. J. Heat Fluid Flow, vol. 25, no. 6, pp. 1034–1046, Dec. 2004. DOI: 10.1016/j.ijheatfluidflow.2004.01.003.
  • T. Basak, S. Roy, and A. R. Balakrishnan, “Effects of thermal boundary conditions on natural convection flows within a square cavity,” Int. J. Heat Mass Transf., vol. 49, nos. 23–24, pp. 4525–4535, Nov. 2006. DOI: 10.1016/j.ijheatmasstransfer.2006.05.015.
  • F.-Y. Zhao, D. Liu, and G.-F. Tang, “Application issues of the streamline, heatline and massline for conjugate heat and mass transfer,” Int. J. Heat Mass Transf., vol. 50, nos. 1–2, pp. 320–334, Jan. 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.06.026.
  • A. Raji, M. Hasnaoui, and A. Bahlaoui, “Numerical study of natural convection dominated heat transfer in a ventilated cavity: Case of forced flow playing simultaneous assisting and opposing roles,” Int. J. Heat Fluid Flow, vol. 29, no. 4, pp. 1174–1181, Aug. 2008. DOI: 10.1016/j.ijheatfluidflow.2008.01.010.
  • G. Nardini, M. Paroncini, and F. Corvaro, “Effect of heat transfer on natural convection in a square cavity with two source pairs,” Heat Transf. Eng., vol. 35, no. 9, pp. 875–886, Jun. 2014. DOI: 10.1080/01457632.2014.852900.
  • Y. Varol, H. F. Oztop, A. Koca, and F. Ozgen, “Natural convection and fluid flow in inclined enclosure with a corner heater,” Appl. Therm. Eng., vol. 29, nos. 2–3, pp. 340–350, Feb. 2009. DOI: 10.1016/j.applthermaleng.2008.02.033.
  • L. A. Tofaneli, and M. J. S. de Lemos, “Double-diffusive turbulent natural convection in a porous square cavity with opposing temperature and concentration gradients,” Int. Commun. Heat Mass Transf., vol. 36, no. 10, pp. 991–995, Dec. 2009. DOI: 10.1016/j.icheatmasstransfer.2009.06.018.
  • W. P. Jones, and B. E. Launder, “The prediction of laminarization with a two-equation model of turbulence,” Int. J. Heat Mass Transf., vol. 15, no. 2, pp. 301–314, Feb. 1972. DOI: 10.1016/0017-9310(72)90076-2.
  • G. V. Kuznetsov, and M. A. Sheremet, “Conjugate heat transfer in an enclosure under the condition of internal mass transfer and in the presence of the local heat source,” Int. J. Heat Mass Transf., vol. 52, nos. 1–2, pp. 1–8, Jan. 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.06.034.
  • H. Sun, G. Lauriat, D. L. Sun, and W. Q. Tao, “Transient double-diffusive convection in an enclosure with large density variations,” Int. J. Heat Mass Transf., vol. 53, no. 4, pp. 615–625, Jan. 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.10.035.
  • S. Chen, J. Tölke, and M. Krafczyk, “Numerical investigation of double-diffusive (natural) convection in vertical annuluses with opposing temperature and concentration gradients,” Int. J. Heat Fluid Flow., vol. 31, no. 2, pp. 217–226, Apr. 2010. DOI: 10.1016/j.ijheatfluidflow.2009.12.013.
  • F. Moufekkir, M. A. Moussaoui, A. Mezrahb, and H. Naji, “Study of coupled double diffusive convection-radiation in a tilted cavity via a hybrid multi-relaxation time-lattice Boltzmann-finite difference and discrete ordinate methods,” Heat Mass Transf., vol. 51, no. 4, pp. 567–586, Apr. 2015. DOI: 10.1007/s00231-014-1423-0.
  • N. H. Saeid, “Natural convection in a square cavity with discrete heating at the bottom with different fin shapes,” Heat Transf. Eng., vol. 39, no. 2, pp. 154–161, Jan. 2018. DOI: 10.1080/01457632.2017.1288053.
  • R. Nikbakhti, and A. B. Rahimi, “Double-diffusive natural convection in a rectangular cavity with partially thermally active side walls,” J. Taiwan. Inst. Chem. Eng., vol. 43, no. 4, pp. 535–541, Jul. 2012. DOI: 10.1016/j.jtice.2012.02.010.
  • K. Ghachem, L. Kolsi, C. Mâatki, A. K. Hussein, and M. N. Borjini, “Numerical simulation of three-dimensional double diffusive free convection flow and irreversibility studies in a solar distiller,” Int. Commun. Heat Mass Transf., vol. 39, no. 6, pp. 869–876, Jul. 2012. DOI: 10.1016/j.icheatmasstransfer.2012.04.010.
  • R. Alvarado-Juárez, G. Álvarez, J. Xamán, and I. Hernández-López, “Numerical study of conjugate heat and mass transfer in a solar still device,” Desalination., vol. 325, pp. 84–94, Sep. 2013. DOI: 10.1016/j.desal.2013.06.027.
  • ASHRAE Standard 62.1–2007, “Ventilation and acceptable indoor air quality,” Atlanta, GA. Available: www.ashrae.org. Accessed: 2007.
  • J. Serrano-Arellano, and M. Gijón-Rivera, “Conjugate heat and mass transfer by natural convection in a square cavity filled with a mixture of air–CO2,” Int. J. Heat Mass Transf., vol. 70, pp. 103–113, Mar. 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.10.051.
  • J. Serrano-Arellano, M. Gijón-Rivera, J. M. Riesco-Ávila, and F. Elizalde-Blancas, “Numerical study of the double diffusive convection phenomena in a closed cavity with internal CO2 point sources,” Int. J. Heat Mass Transf., vol. 71, pp. 664–674, Apr. 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.078.
  • M. Nazari, L. Louhghalam, and M. H. Kayhani, “Lattice Boltzmann simulation of double diffusive natural convection in a square cavity with a hot square obstacle,” Chin. J. Chem. Eng., vol. 23, no. 1, pp. 22–30, Jan. 2015. DOI: 10.1016/j.cjche.2014.10.008.
  • R. Nikbakhti, and J. Khodakhah, “Numerical investigation of double diffusive buoyancy forces induced natural convection in a cavity partially heated and cooled from sidewalls,” Eng. Sci. Technol. Int. J., vol. 19, no. 1, pp. 322–337, Mar. 2016. DOI: 10.1016/j.jestch.2015.08.003.
  • G. Caronna, M. Corcione, and E. Habib, “Natural convection heat and momentum transfer in rectangular enclosures heated at the lower portion of the sidewalls and the bottom wall and cooled at the remaining upper portion of the sidewalls and the top wall,” Heat Transf. Eng., vol. 30, no. 14, pp. 1166–1176, Dec. 2009. DOI: 10.1080/01457630902972777.
  • A. Alhusseny, and A. Turan, “A numerical study of double-diffusive flow in a long rotating porous channel,” Heat and Mass Transf., vol. 51, no. 4, pp. 497–505, Apr. 2015. DOI: 10.1007/s00231-014-1426-x.
  • L. Lan, P. Wargocki, D. P. Wyon, and Z. Lian, “Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses, and human performance,” Indoor Air., vol. 21, no. 5, pp. 376–390, Oct. 2011. DOI: 10.1111/j.1600-0668.2011.00714.x.
  • D.-H. Tsai, J.-S. Lin, and C.-C. Chan, “Office workers' sick building syndrome and indoor carbon dioxide concentrations,” J. Occup. Environ. Hyg., vol. 9, no. 5, pp. 345–351, May 2012. DOI: 10.1080/15459624.2012.675291.
  • Software Cradle, Co. Ltd, Available: http://www.cradle-cfd.com/. Accessed: Dec. 25, 2016), 2013.
  • B. E. Poling, J. M. Prausnitz, and J. P. O'Connell, The Properties of Gases and Liquids, 5th ed. New York: McGraw-Hill, 2001.
  • P. H. Oosthuizen, and D. Naylor, Introduction to Convective Heat Transfer Analysis. New York: McGraw-Hill, 1998.
  • S. Patankar, Numerical Heat Transfer and Fluid Flow. New York: Hemisphere Publishing Co., McGraw-Hill, 1980.
  • B. P. Leonard, “A stable and accurate convective modelling procedure based on quadratic upstream interpolation,” Comput. Methods Appl. Mech. Eng., vol. 19, no. 1, pp. 59–98, Jun. 1979. DOI: 10.1016/0045-7825(79)90034-3.
  • T. Hayase, J. A. C. Humphrey, and R. Greif, “A consistently formulated QUICK scheme for fast and stable convergence using finite-volume iterative calculation procedures,” J. Comput. Phys., vol. 98, no. 1, pp. 108–118, Jan. 1992. DOI: 10.1016/0021-9991(92)90177-Z.
  • A. Kurganov, and E. Tadmor, “New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations,” J. Comput. Phys., vol. 160, no. 1, pp. 241–282, May 2000. DOI: 10.1006/jcph.2000.6459.
  • J. P. Van Doormaal, and G. D. Raithby, “Enhancements of the simple method for predicting incompressible fluid flows,” Numer. Heat Transf. Part – A., vol. 7, no. 2, pp. 147–163, Apr. 1984. DOI: 10.1080/01495728408961817.
  • I. Gustafsson, “A class of first order factorization methods,” BIT Numer. Math., vol. 18, no. 2, pp. 142–156, Jun. 1978. DOI: 10.1007/BF01931691.
  • G. De Vahl Davis, “Natural convection of air in a square cavity: A bench mark numerical solution,” Int. J. Numer. Methods Fluids., vol. 3, no. 3, pp. 249–264, May 1983. DOI: 10.1002/fld.1650030305.
  • N. C. Markatos, and K. A. Pericleous, “Laminar and turbulent natural convection in an enclosed cavity,” Int. J. Heat Mass Transf., vol. 27, no. 5, pp. 755–772, May 1984. DOI: 10.1016/0017-9310(84)90145-5.
  • T. Fusegi, J. M. Hyun, K. Kuwahara, and B. Farouk, “A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure,” Int. J. Heat Mass Transf., vol. 34, no. 6, pp. 1543–1557, Jun. 1991. DOI: 10.1016/0017-9310(91)90295-P.
  • G. Barakos, E. Mitsoulis, and D. Assimacopoulos, “Natural convection flow in a square cavity revisited: Laminar and turbulent models with wall functions,” Int. J. Numer. Methods Fluids, vol. 18, no. 7, pp. 695–719, Apr. 1994. DOI: 10.1002/fld.1650180705.
  • R. J. Krane, and J. Jessee, “Some detailed field measurements for a natural convection flow in a vertical square enclosure,” Proc. 1st ASME-JSME Thermal Eng. Joint Conf., vol. 1, pp. 323–329, Honolulu, 20–24 March 1983.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.