732
Views
33
CrossRef citations to date
0
Altmetric
Articles

Fundamental Issues, Technology Development, and Challenges of Boiling Heat Transfer, Critical Heat Flux, and Two-Phase Flow Phenomena with Nanofluids

, , &

References

  • L. Cheng, E. P. Bandarra Filho, and J. R. Thome, “Nanofluid two-phase flow and thermal physics: a new research frontier of nanotechnology and its challenges,” J. Nanosci. Nanotechnol., vol. 8, no. 7, pp. 3315–3332, 2008. doi:10.1166/jnn.2008.413.
  • L. Cheng and L. Liu, “Boiling and two phase flow phenomena of refrigerant-based nanofluids: fundamentals, applications and challenges,” Int. J. Refrig., vol. 36, no. 2, pp. 421–446, 2013. doi:10.1016/j.ijrefrig.2012.11.010.
  • S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in Developments and Applications of Non-Newtonian Flows, D. A. Siginer and H. P. Wang, Eds. New York, NY, USA: ASME, 1995, pp. 99–105. FED-vol. 231/MD-vol. 66.
  • X. Q. Wang and A. S. Majumdar, “Heat transfer characteristics of nanofluids: a review,” Int. J. Therm. Sci., vol. 46, no. 1, pp. 1–19, 2007. doi:10.1016/j.ijthermalsci.2006.06.010.
  • S. K. Das, S. U. S. Choi, and H. Patel, “Heat transfer in nanofluids – A review,” Heat Transf. Eng., vol. 27, no. 10, pp. 3–19, 2006. doi:10.1080/01457630600904593.
  • X. Fang et al., “Heat transfer and critical heat flux of nanofluid boiling: a comprehensive review,” Renew. Sustain. Energy Rev., vol. 62, pp. 924–940, 2016. doi:10.1016/j.rser.2016.05.047.
  • L. Cheng, “Nanofluid heat transfer technologies,” Recent Patents Eng., vol. 3, no. 1, pp. 1–7, 2009. doi:10.2174/187221209787259875.
  • J. R. Thome, “Boiling in microchannels: a review of experiment and theory,” Int. J. Heat Fluid Flow, vol. 25, no. 2, pp. 128–139, 2004. doi:10.1016/j.ijheatfluidflow.2003.11.005.
  • L. Cheng, “Fundamental issues of critical heat flux phenomena during flow boiling in microscale-channels and nucleate pool boiling in confined spaces,” Heat Transfer Eng., vol. 34, no. 13, pp. 1011–1043, 2013. doi:10.1080/01457632.2013.763538.
  • L. Cheng and D. Mewes, “Review of two-phase flow and flow boiling of mixtures in small and mini channels,” Int. J. Multiphase Flow, vol. 32, no. 2, pp. 183–207, 2006. doi:10.1016/j.ijmultiphaseflow.2005.10.001.
  • J. R. Thome, “The new frontier in heat transfer: microscale and nanoscale technologies,” Heat Transfer Eng., vol. 27, no. 9, pp. 1–3, 2006. doi:10.1080/01457630600845283.
  • L. Cheng and G. Xia, “Fundamental issues, mechanisms and models of flow boiling heat transfer in microscale channels,” Int. J. Heat Mass Transfer, vol. 108, Part A, pp. 97–127, 2017. doi:10.1016/j.ijheatmasstransfer.2016.12.003.
  • L. Cheng and J. R. Thome, “Cooling of microprocessors using flow boiling of CO2 in a micro-evaporator: preliminary analysis and performance comparison,” Appl. Therm. Eng., vol. 29, no. 11–12, pp. 2426–2432, 2009. doi:10.1016/j.applthermaleng.2008.12.019.
  • J. R. Thome, Enhanced Boiling Heat Transfer, New York, NY, USA: Hemisphere Publ. Corp., 1990.
  • G. Xia, M. Du, L. Cheng, and W. Wang, “Experimental study on the nucleate boiling heat transfer characteristics of a multi-wall carbon nanotubes water based nanofluid in a confined space,” Int. J. Heat Mass Transfer, vol. 113, pp. 59–69, 2017. doi:10.1016/j.ijheatmasstransfer.2017.05.021.
  • L. Cheng, “Flow boiling heat transfer and critical heat flux phenomena of nanofluids in microscale channels,” Int. J. Microscale Nanoscale Therm. Fluid Transp. Phenom, vol. 5, no. 3–4, pp. 201–214, 2014.
  • L. Cheng, D. Mewes, and A. Luke, “Boiling phenomena with surfactants and polymeric additives: a state-of-the-art review,” Int. J. Heat Mass Transfer, vol. 50, no. 13–14, pp. 2744–2771, 2007. doi:10.1016/j.ijheatmasstransfer.2006.11.016.
  • J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anormalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett., vol. 78, no. 6, pp. 718–720, 2001. doi:10.1063/1.1341218.
  • Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” Int. J. Heat Fluid Flow, vol. 21, no. 1, pp. 58–64, 2000. doi:10.1016/S0142-727X(99)00067-3.
  • S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” ASME J. Heat Transfer, vol. 125, no. 4, pp. 567–574, 2003. doi:10.1115/1.1571080.
  • S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” ASME J. Heat Transfer, vol. 121, no. 2, pp. 280–289, 1999. doi:10.1115/1.2825978.
  • S. P. Jang and S. U. S. Choi, “Role of Brownian motion in the enhanced thermal conductivity of nanofluids,” Appl. Phys. Lett., vol. 84, no. 21, pp. 219–246, 2004. doi:10.1063/1.1756684.
  • T. K. Hong, H.-S. Yang, and C. J. Choi, “Study of the enhanced thermal conductivity of Fe nanofluids,” J. Appl. Phys., vol. 97, no. 6, pp. 064311-1–064311-4, 2005. doi:10.1063/1.1861145.
  • S. P. Jang and S. U. S. Choi, “Effects of various parameters on nanofluid thermal conductivity,” ASME J. Heat Transfer, vol. 129, no. 5, pp. 617–623, 2007. doi:10.1115/1.2712475.
  • S. M. S. Murshed, K. C. Leong, and C. Yang, “Enhanced thermal conductivity of TiO2–water based nanofluids,” Int. J. Therm. Sci., vol. 44, no. 4, pp. 367–373, 2004. doi:10.1016/j.ijthermalsci.2004.12.005.
  • S. M. S. Murshed, K. C. Leong, and C. Yang, “Investigations of thermal conductivity and viscosity of nanofluids,” Int. J. Therm. Sci., vol. 47, no. 5, pp. 560–568, 2008. doi:10.1016/j.ijthermalsci.2007.05.004.
  • J. Y. Huang et al., “Superplastic single-walled carbon nanotubes,” Nature, vol. 439, pp. 281, 2006. doi:10.1038/439281a.
  • M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, and A. T. Johnson, “Carbon nanotube composites for thermal management,” Appl. Phys. Lett., vol. 80, no. 15, pp. 2767–2769, 2002. doi:10.1063/1.1469696.
  • J. Hone, M. Whitney, and A. Zettl, “Thermal conductivity of single-walled carbon nanotubes,” Synth. Met., vol. 103, no. 1–3, pp. 2498–2499, 1999. doi:10.1016/S0379-6779(98)01070-4.
  • S. Berber, Y. K. Kwon, and D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett., vol. 84, no. 20, pp. 4613–4616, 2000. doi:10.1103/PhysRevLett.84.4613.
  • P. Kim, L. Shi, A. Majumdar, and P. L. Mceuen, “Thermal transport measurements of individual multiwalled nanotubes,” Phys. Rev. Lett., vol. 87, no. 21, pp. 215502-1–215502-4, 2001. doi:10.1103/PhysRevLett.87.215502.
  • S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett., vol. 79, no. 14, pp. 2252–2254, 2001. doi:10.1063/1.1408272.
  • H. Xie, H. Lee, W. Youn, and M. Choi, “Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities,” J. Appl. Phys., vol. 94, no. 8, pp. 4967–4971, 2003. doi:10.1063/1.1613374.
  • M. S. Liu, M. C. C. Lin, I. T. Huang, and C. C. Wang, “Enhancement of thermal conductivity with carbon nanotube for nanofluids,” Int. Comm. Heat Mass Transfer, vol. 32, no. 9, pp. 1202–1210, 2005. doi:10.1016/j.icheatmasstransfer.2005.05.005.
  • M. J. Assael, I. N. Metaxa, J. Arvanitidis, D. Christofilos, and C. Lioutas, “Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants,” Int. J. Thermophys., vol. 26, no. 3, pp. 647–664, 2005. doi:10.1007/s10765-005-5569-3.
  • D. S. Wen and Y. L. Ding, “Effective thermal conductivity of aqueous suspensions of carbon nanotubes nanofluids,” J. Thermophys. Heat Transfer, vol. 18, no. 4, pp. 481–485, 2004. doi:10.2514/1.9934.
  • Y. Ding, H. Alias, D. Wen, and R. A. Williams, “Heat transfer of aqueous suspensions of carbon nanotubes,” Int. J. Heat Mass Transfer, vol. 49, no. 1–2, pp. 240–250, 2006. doi:10.1016/j.ijheatmasstransfer.2005.07.009.
  • R. L. Hamilton and O. K. Crosser, “Thermal conductivity of heterogeneous two component systems,” Ind. Eng. Chem. Fundamentals, vol. 1, no. 3, pp. 187–191, 1962. doi:10.1021/i160003a005.
  • P. Keblinski, S. R. Phillpot, S. U. S. Choi, and J. A. Eastman, “Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids),” Int. J. Heat Mass Transfer, vol. 45, no. 4, pp. 855–863, 2002. doi:10.1016/S0017-9310(01)00175-2.
  • J. A. Eastman, S. R. Phillpot, S. U. S. Choi, and P. Keblinski, “Thermal transport in nanofluids,” Ann. Rev. Mater. Res., vol. 34, pp. 219–246, 2004. doi:10.1146/annurev.matsci.34.052803.090621.
  • H. Xie, W. Yu, Y. Li, and L. Chen, “Discussion on the thermal conductivity enhancement of nanofluids,” Nanoscale Res. Lett., vol. 124, no. 6, pp. 1–12, 2011.
  • D. Lee, J.-W. Kim, and B. G. Kim, “A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension,” J. Phys. Chem. B, vol. 110, no. 9, pp. 4323–4328, 2006. doi:10.1021/jp057225m.
  • P. Vadasz, “Heat conduction in nanofluid suspensions,” ASME J. Heat Transfer, vol. 128, no. 5, pp. 465–477, 2006. doi:10.1115/1.2175149.
  • Y. Xuan, Q. Li, and W. Hu, “Aggregation structure and thermal conductivity of nanofluids,” AIChE J., vol. 49, no. 4, pp. 1038–1043, 2003. doi:10.1002/aic.690490420.
  • D. P. Kulkarni, D. K. Das, and S. L. Patil, “Effect of temperature on rheological properties of copper oxide nanoparticles dispersed in propylene glycol and water mixture,” J. Nanosci Nanotechnol., vol. 7, no. 7, pp. 2318–2322, 2007. doi:10.1166/jnn.2007.437.
  • D. P. Kulkarni, D. K. Das, and G. A. Chukwu, “Temperature dependent rheological property of copper oxide nanoparticles (nanofluid),” J. Nanoscj. Nanotechnol., vol. 6, no. 4, pp. 1150–1154, 2006. doi:10.1166/jnn.2006.187.
  • C. T. Nguyen et al., “Viscosity data for Al2O3–water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable?,” Int. J. Therm. Sci., vol. 47, no. 2, pp. 103–111, 2008. doi:10.1016/j.ijthermalsci.2007.01.033.
  • A. Einstein, “Eine neue bestimmung der moleküldimensionen,” Ann. Physik., vol. 324, no. 2, pp. 289–306, 1906. doi:10.1002/andp.19063240204.
  • D. Shin and D. Banerjee, “Enhanced specific heat of silica nanofluid,” ASME J. Heat Transfer, vol. 133, no. 2, pp. 024510-1–024510-4, 2011. doi:10.1115/1.4002600.
  • D. Shin and D. Banerjee, “Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications,” Int. J. Heat Mass Transfer, vol. 54, no. 5–6, pp. 1064–1070, 2011. doi:10.1016/j.ijheatmasstransfer.2010.11.017.
  • H. Tiznobaik and D. Shin, “Enhanced specific heat capacity of high-temperature molten salt-based nanofluids,” Int. J. Heat Mass Transfer, vol. 57, no. 2, pp. 542–548, doi:10.1016/j.ijheatmasstransfer.2012.10.062.
  • G. Ramesh and N. K. Prabhu, “Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment,” Nanoscale Res. Lett., vol. 6, no. 1, paper 334, pp. 1–15, 2011. doi:10.1186/1556-276X-6-334.
  • I. C. Nelson and D. Banerjee, “Flow loop experiments using polyalphaolefin nanofluids,” J. Thermophys. Heat Transfer, vol. 23, no. 4, pp. 752–761, 2009. doi:10.2514/1.31033.
  • R. S. Vajjha and D. K. Das, “Specific heat measurement of three nanofluids and development of new correlations,” ASME J. Heat Transfer, vol. 131, no. 7, pp. 071601-1–071601-7, 2009. doi:10.1115/1.3090813.
  • Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Transfer, vol. 43, no. 19, pp. 3701–3707, 2000. doi:10.1016/S0017-9310(99)00369-5.
  • J. Buobgiorno, “Convective transport in nanofluid,” ASME J. Heat Transfer, vol. 128, no. 3, pp. 240–250, 2005. doi:10.1115/1.2150834.
  • H. S. Xue, J. R. Fan, Y. C. Hu, R. H. Hong, and K. F. Cen, “The interface effect of carbon nanotube suspension on thermal performance of a two-phase closed thermosyphon,” J. Appl. Phys., vol. 100, no. 10, pp. 104909-1–104909-5, 2006. doi:10.1063/1.2357705.
  • S. Tanvir and L. Qiao, “Surface tension of nanofluid-type fuels containing suspended nanomaterials,” Nanoscale Res. Lett., vol. 7, paper 226, pp. 1–10, 2012. doi:10.1186/1556-276X-7-226.
  • R. Kamatchi, S. Venkatachalapathy, and C. Nithya, “Experimental investigation and mechanism of critical heat flux enhancement in pool boiling heat transfer with nanofluids,” Heat Mass Transfer, vol. 52, no. 11, pp. 2357–2366, 2016. doi:10.1007/s00231-015-1749-2.
  • S. Tanvir, S. Jain, and L. Qiao, “Latent heat of vaporization of nanofluids: measurements and molecular dynamics simulations,” J. Appl. Phys., vol. 118, no. 1, pp. 014902-1–014902-8, 2015. doi:10.1063/1.4922967.
  • S. Lee et al., “Experimental investigation of the latent heat of vaporization in aqueous nanofluids,” Appl. Phys. Lett., vol. 104, no. 15, pp. 151908-1–151908-4, 2014. doi:10.1063/1.4872176.
  • Y. M. Yang and J. R. Maa, “Boiling of suspension of solid particles in water,” Int. J. Heat Mass Transfer, vol. 27, no. 1, pp. 145–147, 1984. doi:10.1016/0017-9310(84)90248-5.
  • J. P. Tu, N. Dinh, and T. Theofanous, “An experimental study of nanofluid boiling heat transfer,” Proc. 6th Int. Sym. Heat Transfer, Beijing, China, June 15–19, 2004.
  • D. Wen and Y. Ding, “Experimental investigation into pool boiling heat transfer of aqueous based γ-alumina nanofluids,” J. Nanoparticle Res., vol. 7, no. 2–3, pp. 265–274, 2005. doi:10.1007/s11051-005-3478-9.
  • D. S. Wen, Y. L. Ding, and R. A. Williams, “Pool boiling heat transfer of aqueous based TiO2 nanofluids,” J. Enhanced Heat Transfer, vol. 13, no. 3, pp. 231–244, 2006. doi:10.1615/JEnhHeatTransf.v13.i3.30.
  • M. Chopkar, A. K. Das, I. Manna, and P. K. Das, “Pool boiling heat transfer characteristics of ZrO2–water nanofluids from a flat surface in a pool,” Heat Mass Transfer, vol. 44, no. 8, pp. 999–1004, 2008. doi:10.1007/s00231-007-0345-5.
  • S. Witharana, “Boiling of refrigerants on enhanced surfaces and boiling of nanofluids,” Ph.D. thesis, The Royal Institute of Technology, Sweden, 2003.
  • C. Y. Yang and D. W. Liu, “Effect of nano-particles for pool boiling heat transfer of refrigerant 141B on horizontal tubes,” Int. J. Microscale Nanoscale Therm. Fluid Transp. Phenom., no. 3, pp. 233–243, 2010.
  • M. G. Cooper, “Saturation nucleate pool boiling – a simple correlation,” Int. Chem. Eng. Symp. Ser., vol. 86, no. 2, pp. 785–792, 1984.
  • S. K. Das, N. Putra, and W. Roetzel, “Pool boiling characteristics of nanofluids,” Int. J. Heat Mass Transfer, vol. 46, no. 5, pp. 851–862, 2003. doi:10.1016/S0017-9310(02)00348-4.
  • I. C. Bang and S. H. Chang, “Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool,” Int. J. Heat Mass Transfer, vol. 48, no. 12, pp. 2407–2419, 2005. doi:10.1016/j.ijheatmasstransfer.2004.12.047.
  • C. H. Li, B. X. Wang, and X. F. Peng, “Experimental investigations on boiling of nano-particle suspensions,” 5th Boiling Heat Transfer Conf., Montego Bay, Jamaica, May 4–8, 2003.
  • S. K. Das, N. Putra, and W. Roetzel, “Pool boiling characteristics of nanofluids on horizontal narrow tubes,” Int. J. Multiphase Flow, vol. 29, no. 8, pp. 1237–1247, 2003. doi:10.1016/S0301-9322(03)00105-8.
  • S. M. You, J. H. Kim, and K. H. Kim, “Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer,” Appl. Phys. Lett., vol. 83, no. 16, pp. 3374–3376, 2003. doi:10.1063/1.1619206.
  • J. H. Kim, K. H. Kim, and S. M. You, “Pool boiling heat transfer in saturated nanofluids,” 2004 -ASME Int. Mech. Eng. Congr. & Exp., Anaheim, CA, USA, Heat Transfer, Nov. 13–19, 2004, vol. 2, pp. 621–628.
  • P. Vassallo, R. Kumar, and S. D'Amico, “Pool boiling heat transfer experiments in silica–water nano-fluids,” Int. J. Heat Mass Transfer, vol. 47, no. 2, pp. 407–411, 2004. doi:10.1016/S0017-9310(03)00361-2.
  • G. Prakash Narayan, A. K. B. G. Sateesh, and S. K. Das, “Effect of surface orientation on pool boiling heat transfer of nanoparticle suspensions,” Int. J. Multiphase Flow, vol. 34, no. 2, pp. 145–160, 2008. doi:10.1016/j.ijmultiphaseflow.2007.08.004.
  • X. Tang, Y. H. Zhao, and Y. H. Diao, “Experimental investigation of the nucleate pool boiling heat transfer characteristics of δ-Al2O3-R141b nanofluids on a horizontal plate,” Exp. Therm. Fluid Sci., vol. 52, pp. 88–96, 2014. doi:10.1016/j.expthermflusci.2013.08.025.
  • Y. R. He, H. R. Li, Y. W. Hu, and J. Q. Zhu, “Boiling heat transfer characteristics of ethylene glycol and water mixture based ZnO nanofluids in a cylindrical vessel,” Int. J. Heat Mass Transfer, vol. 98, pp. 611–615, 2016. doi:10.1016/j.ijheatmasstransfer.2016.03.052.
  • S. N. Shoghl, M. Bahrami, and M. Jamialahmadi, “The boiling performance of ZnO, α-Al2O3 and MWCNTs–water nanofluids: an experimental study,” Exp. Therm. Fluid Sci., vol. 80, pp. 27–39, 2017. doi:10.1016/j.expthermflusci.2016.07.024.
  • Z. Shahmoradi, N. Etesami, and M. N. Esfahany, “Pool boiling characteristics of nanofluid on flat plate based on heater surface analysis,” Int. Comm. Heat Mass Transfer, vol. 47, no. 5, pp. 113–120, 2013. doi:10.1016/j.icheatmasstransfer.2013.06.006.
  • M. M. Sarafra and F. Hormozi, “Nucleate pool boiling heat transfer characteristics of dilute Al2O3–ethyleneglycol nanofluids,” Int. Comm. Heat Mass Transfer, vol. 58, pp. 96–104, 2014. doi:10.1016/j.icheatmasstransfer.2014.08.028.
  • M. M. Sarafraz and F. Hormozi, “Experimental investigation on the pool boiling heat transfer to aqueous multi-walled carbon nanotube nanofluids on the micro-finned surfaces,” Int. J. Therm. Sci., vol. 100, no. 22, pp. 255–266, 2015.
  • M. M. Sarafraz and F. Hormozi, “Pool boiling heat transfer to dilute copper oxide aqueous nanofluids,” Int. J. Therm. Sci., vol. 90, pp. 224–237, 2015. doi:10.1016/j.ijthermalsci.2014.12.014.
  • Y. H. Diao, C. Z. Li, Y. H. Zhao, Y. Liu, and S. Wang, “Experimental investigation on the pool boiling characteristics and critical heat flux of Cu-R141b nanorefrigerant under atmospheric pressure,” Int. J. Heat Mass Transfer, vol. 89, pp. 110–115, 2015. doi:10.1016/j.ijheatmasstransfer.2015.05.043.
  • K. J. Park and D. Jung, “Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning,” Energy Buildings, vol. 39, no. 9, pp. 1061–1064, 2007. doi:10.1016/j.enbuild.2006.12.001.
  • I. C. Bang, S. H. Chang, and W. P. Baek, “Direct observation of a liquid film under a vapor environment in a pool boiling using a nanofluid,” Appl. Phys. Lett., vol. 86, no. 13, pp. 134107-1–134107-3, 2005. doi:10.1063/1.1873053.
  • C. H. Chon, S. Paik, J. B. Tipton Jr., and K. D. Kihm, “Effect of nanoparticle sizes and number densities on the evaporation and dryout characteristics for strongly pinned nanofluid droplets,” Langmuir, vol. 23, no. 6, pp. 2953–2960, 2007. doi:10.1021/la061661y.
  • K. Sefiane, “On the role of structural disjoining pressure and contact line pinning in critical heat flux enhancement during boiling of nanofluids,” Appl. Phys. Lett., vol. 89, no. 4, pp. 044106-1–044106-3, 2006. doi:10.1063/1.2222283.
  • S. J. Kim, I. C. Bang, J. Buongiorno, and L. W. Hu, “Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux,” Int. J. Heat Mass Transfer, vol. 50, no. 19–20, pp. 4105–4116, 2007. doi:10.1016/j.ijheatmasstransfer.2007.02.002.
  • S. J. Kim, I. C. Bang, J. Buongiorno, and L. W. Hu, “Study of pool boiling and critical heat flux enhancement in nanofluids,” Bull. Polish Acad. Sci., vol. 55, no. 2, pp. 211–216, 2007.
  • H. Kim, J. Kim, and M. H. Kim, “Effect of nanoparticles on CHF enhancement in pool boiling of nano-fluids,” Int. J. Heat Mass Transfer, vol. 49, no. 25–26, pp. 5070–5074, 2006. doi:10.1016/j.ijheatmasstransfer.2006.07.019.
  • H. D. Kim, J. Kim, and M. H. Kim, “Experimental studies on CHF characteristics of nano-fluids at pool boiling,” Int. J. Multiphase Flow, vol. 33, no. 7, pp. 691–706, 2007. doi:10.1016/j.ijmultiphaseflow.2007.02.007.
  • H. D. Kim and M. H. Kim, “Experimental study of the characteristics and mechanism of pool boiling CHF enhancement using nanofluids,” Heat and Mass Transfer, vol. 45, no. 7, pp. 991–998, 2009. doi:10.1007/s00231-007-0318-8.
  • D. Milanova and R. Kumar, “Role of ions in pool boiling heat transfer of pure and silica nanofluids,” Appl. Phys. Lett., vol. 87, no. 23, pp. 233107-1–233107-3, 2005. doi:10.1063/1.2138805.
  • H. S. Xue, J. R. Fan, R. H. Hong, and Y. C. Hu, “Characteristic boiling curve of carbon nanotube nanofluid as determined by the transient calorimeter technique,” Appl. Phys. Lett., vol. 90, no. 18, pp. 184107-1–184107-3, 2007. doi:10.1063/1.2736653.
  • K. J. Park, D. Jung, and S. E. Shim, “Nucleate boiling heat transfer in aqueous solutions with carbon nanotubes up to critical heat fluxes,” Int. J. Multiphase Flow, vol. 35, no. 6, pp. 525–532, 2009. doi:10.1016/j.ijmultiphaseflow.2009.02.015.
  • J. Gilbert Moreno, S. Oldenburg, S. M. You, and J. H. Kim, “Pool boiling heat transfer of alumina–water, zinc oxide–water and alumina–water ethylene glycol nanofluids,” HT2005, San Francisco, CA, USA, Jul. 17–22, 2005, pp. 625–632.
  • B. Jo. P. S. Jeon, J. Yoo, and J. H. Kim, “Wide range parametric study for the pool boiling of nano-fluids with a circular plate heater,” J. Vis., vol. 12, no. 1, pp. 7–46, 2009.
  • H. Skashita, “Pressure effect on CHF enhancement in pool boiling of nanofluids,” J. Nucl. Sci. Technol., vol. 53, no. 6, pp. 797–802, 2015. doi:10.1080/00223131.2015.1072482.
  • M. M. Sarafraz, T. Kiani, and F. Hormozi, “Critical heat flux and pool boiling heat transfer analysis of synthesized zirconia aqueous nanofluids,” Int. Comm. Heat Mass Transfer, vol. 70, pp. 75–83, 2016. doi:10.1016/j.icheatmasstransfer.2015.12.008.
  • M. N. Sarafraz, F. Hormozi, M. Silakhori, and S. M. Peyghambarzadeh, “On the fouling formation of functionalized and non-functionalized carbon nanotube nanofluids under pool boiling condition,” Appl. Therm. Eng., vol. 95, pp. 433–444, 2016. doi:10.1016/j.applthermaleng.2015.11.071.
  • S. M. Kwark, R. Kumar, G. Moreno, J. Yoo, and S. M. You, “Pool boiling characteristics of low concentration nanofluids,” Int. J. Heat Mass Transfer, vol. 53, no. 5–6, pp. 927–981, 2010.
  • S. Ujereh, T. Fisher, and I. Mudawar, “Effects of carbon nanotube arrays on nucleate pool boiling,” Int. J. Heat Mass Transfer, vol. 50, no. 19–20, pp. 4023–4038, 2007. doi:10.1016/j.ijheatmasstransfer.2007.01.030.
  • H. S. Ahn et al., “Pool boiling experiments on multiwalled carbon nanotube (MWCNT) forests,” ASME J. Heat Transfer, vol. 128, no. 12, pp. 1335–1342, 2006. doi:10.1115/1.2349511.
  • S. Khandekar, Y. M. Joshi, and B. Mehta, “Thermal performance of closed two-phase thermosyphon using nanofluids,” Int. J. Therm. Sci., vol. 47, no. 6, pp. 659–667, 2008. doi:10.1016/j.ijthermalsci.2007.06.005.
  • K. Henderson, Y. G. Park, and L. P. Liu, “Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube,” Int. J. Heat Mass Transfer, vol. 53, no. 5–6, pp. 944–951, 2010. doi:10.1016/j.ijheatmasstransfer.2009.11.026.
  • Z. H. Liu, X. F. Yang, and G. L. Guo, “Effect of nanoparticles in nanofluids on thermal performance in a miniature thermosyphon,” J. Appl. Phys., vol. 102, no. 1, pp. 013526-1–013526-8, 2007. doi:10.1063/1.2748348.
  • H. B. Ma et al., “An experimental investigation of heat transport capability in a nanofluid oscillating heat pipe,” ASME J. Heat Transfer, vol. 128, no. 11, pp. 1213–1216, 2006. doi:10.1115/1.2352789.
  • Z. H. Liu, J. G. Xiong, and R. Bao, “Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface,” Int. J. Multiphase Flow, vol. 33, no. 12, pp. 1284–1295, 2007. doi:10.1016/j.ijmultiphaseflow.2007.06.009.
  • Z. H. Liu and Y. H. Qiu, “Boiling heat transfer characteristics of nanofluids jet impingement on a plate surface,” Heat Mass Transfer, vol. 43, no. 7, pp. 699–706, 2007. doi:10.1007/s00231-006-0159-x.
  • Y. Park et al., “Nanoparticles to enhance evaporative heat transfer,” The 22nd Int. Congr. Refrig., Beijing, Aug. 21–26, 2007, in CD-Room, Paper number: ICR07-B1-309.
  • M. A. Akhavan-Behabadi, M. Nasr, and S. Baqeri, “Experimental investigation of flow boiling heat transfer of R-600a/oil/CuO in a plain horizontal tube,” Exp. Therm. Fluid Sci., vol. 58, pp. 105–111, 2014. doi:10.1016/j.expthermflusci.2014.06.013.
  • H. Setoodeh, A. Keshavarz, A. Ghasemian, and A. Nasouhi, “Subcooled flow boiling of alumina/water nanofluid in a channel with a hot spot: an experimental study,” Appl. Therm. Eng., vol. 90, pp. 384–394, 2015. doi:10.1016/j.applthermaleng.2015.07.016.
  • V. Nikkhah, M. M. Sarafraz, F. Hormozi, S. M. Peyghambarzadeh, “Particulate fouling of CuO–water nanofluid at isothermal diffusive condition inside the conventional heat exchanger – experimental and modeling,” Exp. Therm. Fluid. Sci., vol. 60, pp. 83–95, 2015. doi:10.1016/j.expthermflusci.2014.08.009.
  • M. M. Sarafraz, F. Hormozi, S. M. Peyghambarzadeh, and N. Vaeli, “Upward flow boiling to DI–water and CuO nanofluids inside the concentric annuli,” J. Appl. Fluid Mech., vol. 8, no. 4, pp. 651–659, 2015. doi:10.18869/acadpub.jafm.67.223.19404.
  • G. Paul, P. K. Das, and I. Manna, “Assessment of the process of boiling heat transfer during rewetting of a vertical tube bottom flooded by alumina nanofluid,” Int. J. Heat Mass Transfer, vol. 94, pp. 390–402, 2016. doi:10.1016/j.ijheatmasstransfer.2015.11.013.
  • M. M. Sarafraz and F. Hormozi, “Comparatively experimental study on the boiling thermal performance of metal oxide and multi-walled carbon nanotube nanofluids,” Powder Technol., vol. 287, pp. 412–430, 2016. doi:10.1016/j.powtec.2015.10.022.
  • Y. Wang and G. H. Su, “Experimental investigation on nanofluid flow boiling heat transfer in a vertical tube under different pressure conditions,” Exp. Therm. Fluid Sci., vol. 77, pp. 116–123, 2016. doi:10.1016/j.expthermflusci.2016.04.014.
  • S. J. Kim, T. McKrell, J. Buongiorno, and L. W. Hu, “Alumina nano-particles enhance the flow boiling critical heat flux of water at low pressure,” ASME J. Heat Transfer, vol. 130, no. 4, pp. 044501-1–044501-3, 2008. doi:10.1115/1.2818787.
  • S. J. Kim, T. McKrell, J. Buongiorno, and L. W. Hu, “Experimental study of flow critical heat flux in alumina–water, zinc-oxide–water, and diamond–water nanofluids,” ASME J. Heat Transfer, vol. 131, no. 4, pp. 043204-1–043204-7, 2009. doi:10.1115/1.3072924.
  • H. S. Ahn et al., “Experimental study of critical heat flux enhancement during forced convective flow boiling of nanofluid on a short heated surface,” Int. J. Multiphase Flow, vol. 36, no. 5, pp. 375–384, 2010. doi:10.1016/j.ijmultiphaseflow.2010.01.004.
  • Y. Katto and C. Kurata, “Critical heat flux of saturated convective boiling on uniformly heated plates in a parallel flow,” Int. J. Multiphase Flow, vol. 6, no. 6, pp. 575–582, 1980. doi:10.1016/0301-9322(80)90052-X.
  • H. S. Ahn, S. Kang, H. Jo, H. Kim, and M. H. Kim, “Visualization study of the effects of nanoparticles surface deposition on convective flow boiling CHF from a short heated wall,” Int. J. Multiphase Flow, vol. 37, no. 2, pp. 215–228, 2011. doi:10.1016/j.ijmultiphaseflow.2010.09.005.
  • H. S. Ahn, S. H. Kang, and M. H. Kim, “Visualized effect of alumina nanoparticles surface deposition on water flow boiling heat transfer,” Exp. Therm. Fluid Sci., vol. 37, pp. 154–163, 2012. doi:10.1016/j.expthermflusci.2011.10.017.
  • T. I. Kim, W. J. Chang, and S. H. Chang, “An experimental study on CHF enhancement in flow boiling using Al2O3 nano-fluid,” Int. J. Heat Mass Transfer, vol. 53, no. 5–6, pp. 1015–1022, 2010. doi:10.1016/j.ijheatmasstransfer.2009.11.011.
  • T. I. Kim, W. J. Chang, and S. H. Chang, “Flow boiling CHF enhancement using Al2O3 nanofluid and an Al2O3 nanoparticle deposited tube,” Int. J. Heat Mass Transfer, vol. 54, no. 9–10, pp. 2021–2025, 2011. doi:10.1016/j.ijheatmasstransfer.2010.12.029.
  • S. W. Lee et al., “Critical heat flux enhancement in flow boiling of Al2O3 and SiC nanofluids under low pressure and low flow conditions,” Nucl. Eng. Technol., vol. 44, no. 4, pp. 429–436, 2012. doi:10.5516/NET.04.2012.516.
  • S. W. Lee, K. M. Kim, and I. C. Bang, “Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid,” Int. J. Heat Mass Transfer, vol. 65, pp. 348–356, 2013. doi:10.1016/j.ijheatmasstransfer.2013.06.013.
  • H. S. Ahn and M. H. Kim, “The effect of micro/nanoscale structures on CHF enhancement,” Nucl. Eng. Technol., vol. 43, no. 3, pp. 205–216, 2011. doi:10.5516/NET.2011.43.3.205.
  • G. Dewitt, T. Makrell, J. Buongiorno, L. W. Hu, and R. J. Park, “Experimental study of critical heat flux with alumina–water nanofluids in downward-facing channels for in-vessel retention applications,” Nucl. Eng. Technol., vol. 45, no. 3, pp. 335–346, 2013. doi:10.5516/NET.02.2012.075.
  • T. Lee, J. H. Lee and Y. H. Jeong, “Flow boiling critical heat flux characteristics of magnetic nanofluid at atmospheric pressure and low mass flux conditions,” Int. J. Heat Mass Transfer, vol. 56, no. 1–2, pp. 101–106, 2013. doi:10.1016/j.ijheatmasstransfer.2012.09.030.
  • H. Aminfar, M. Mohammadpourfard, and R. Maroofiazar, “Experimental study on the effect of magnetic field on critical heat flux of ferrofluid flow boiling in a vertical annulus,” Exp. Therm. Fluid Sci., vol. 58, pp. 156–169, 2014. doi:10.1016/j.expthermflusci.2014.06.023.
  • M. Boudouh, H. L. Gualous, and M. De Labachelerie, “Local convective boiling heat transfer and pressure drop of nanofluid in narrow rectangular channels,” Appl. Therm. Eng., vol. 30, no. 17–18, pp. 2619–2631, 2010. doi:10.1016/j.applthermaleng.2010.06.027.
  • J. Lee and I. Mudawar, “Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels,” Int. J. Heat Mass Transfer, vol. 50, no. 3–4, pp. 452–463, 2007. doi:10.1016/j.ijheatmasstransfer.2006.08.001.
  • A. A. Chehade, H. L. Gualous, S. Le Masson, F. Fardoun, and A. Besq, “Boiling local heat transfer enhancement in minichannels using nanofluids,” Nanoscale Res. Lett., vol. 8, no. 130, pp. 1–20, 2013.
  • G. Duursma, K. Sefiane, A. Dehaene, S. Harmand, and Y. Wang, “Flow and heat transfer of single- and two-phase boiling of nanofluids in microchannel,” Heat Transf. Eng., vol. 36, no. 14–15, pp. 1252–1265, 2015. doi:10.1080/01457632.2014.994990.
  • V. Khanikar, I. Mudawar, and T. Fisher, “Effect of carbon nanotube coating on flow boiling in a micro-channel,” Int. J. Heat Mass Transfer, vol. 52, no. 15–16, pp. 3805–3817, 2009. doi:10.1016/j.ijheatmasstransfer.2009.02.007.
  • S. Vafaei and D. Wen, “Critical heat flux (CHF) of subcooled flow boiling of alumina nanofluids in a horizontal microchannel,” ASME J. Heat Transfer, vol. 132, no. 10, pp. 102404-1–102402-7, 2010. doi:10.1115/1.4001629.
  • S. Vafaei and D. Wen, “Flow boiling heat transfer of alumina nanofluids in single microchannels and the roles of nanoparticles,” J. Nanoparticle Res., vol. 13, no. 3, pp. 1063–1073, 2011. doi:10.1007/s11051-010-0095-z.
  • Z. Edel and A. Mukherjee, “Flow boiling dynamics of water and nanofluids in a single microchannel at different heat fluxes,” ASME J. Heat Transfer, vol. 137, no. 1, pp. 011501-1–011501-8, 2015. doi:10.1115/1.4028763.
  • L. Yu, A. Sur, and D. Liu, “Flow boiling heat transfer and two-phase flow instability of nanofluids in a minichannel,” ASME J. Heat Transfer, vol. 137, no. 5, pp. 051502-1–051502-11, 2015. doi:10.1115/1.4029647.
  • H. K. Forster and N. Zuber, “Dynamics of vapor bubbles and boiling heat transfer,” AIChE J., vol. 1, no. 4, pp. 531–535, 1955. doi:10.1002/aic.690010425.
  • K. Stephen and M. Abdelsalam, “Heat transfer correlation for natural convection boiling,” Int. J. Heat Mass Transfer, vol. 23, no. 1, pp. 73–87, 1980. doi:10.1016/0017-9310(80)90140-4.
  • J. H. Lienhard and V. K. Dhir, “Peak pool boiling heat-flux measurements on finite horizontal flat plates,” ASME J. Heat Transfer, vol. 95, no. 4, pp. 477–482, 1973. doi:10.1115/1.3450092.
  • N. Kattan, J. R. Thome, and D. Favrat, “Flow boiling in horizontal tubes: Part 3. heat transfer model based on flow pattern,” ASME J. Heat Transfer, vol. 120, no. 1, pp. 156–165, 1998. doi:10.1115/1.2830039.
  • L. Wojtan, R. Revellin, and J. R. Thome, “Investigation of critical heat flux in single, uniformly heated microchannels,” Exp. Therm. Fluid Sci., vol. 30, no. 8, pp. 765–774, 2006. doi:10.1016/j.expthermflusci.2006.03.006.
  • L. Cheng, “Flow patterns and bubble growth in microchannels,” in Microchannel Phase Change Transport Phenomena, S. K. Saha, Ed. London: Butterworth-Heinemann, 2016, pp. 91–140.
  • L. Cheng, “Flow boiling heat transfer with models in microchannel,” in Microchannel Phase Change Transport Phenomena, S. K. Saha, Ed. London: Butterworth-Heinemann, 2016, pp. 141–191.
  • L. Cheng, G. Ribatski, and J. R. Thome, “Two phase flow patterns and glow pattern maps: fundamentals and applications,” Appl. Mech. Rev., vol. 61, no. 5, pp. 050802-1–050802-28, 2008. doi:10.1115/1.2955990.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.